期刊文献+
共找到5,574篇文章
< 1 2 250 >
每页显示 20 50 100
Graphene-Based Phthalocyanine-Assembled Synergistic Fe-Co-Ni Trimetallic Single-Atomic Bifunctional Electrocatalysts by Rational Design for Boosting Oxygen Reduction/Evolution Reactions
1
作者 Yujun Wu Shaobing Tang +7 位作者 Wenbo Shi Zhaoyu Ning Xingke Du Cunling Ye Zhengyu Bai Wei Shuang Qing Zhang Lin Yang 《Carbon Energy》 2025年第9期114-126,共13页
Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains... Development of high-efficiency bifunctional oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)electrocatalysts is vital for the widespread application of zinc-air batteries(ZABs).However,it still remains a great challenge to avoid the inhomogeneous distribution and aggregation of metal single-atomic active centers in the construction of bifunctional electrocatalysts with atomically dispersed multimetallic sites because of the common calcination method.Herein,we report a novel catalyst with phthalocyanine-assembled Fe-Co-Ni single-atomic triple sites dispersed on sulfur-doped graphene using a simple ultrasonic procedure without calcination,and X-ray absorption fine structure(XAFS),aberration-corrected scanning transmission electron microscopy(AC-STEM),and other detailed characterizations are performed to demonstrate the successful synthesis.The novel catalyst shows extraordinary bifunctional ORR/OER activities with a fairly low potential difference(ΔE=0.621 V)between the OER overpotential(Ej10=315 mV at 10 m A cm^(-2))and the ORR half-wave potential(Ehalf-wave=0.924 V).Moreover,the above catalyst shows excellent ZAB performance,with an outstanding specific capacity(786 mAh g^(-1)),noteworthy maximum power density(139 mW cm^(-2)),and extraordinary rechargeability(discharged and charged at 5 mA cm^(-2) for more than 1000 h).Theoretical calculations reveal the vital importance of the preferable synergetic coupling effect between adjacent active sites in the Fe-Co-Ni trimetallic single-atomic sites during the ORR/OER processes.This study provides a new avenue for the investigation of bifunctional electrocatalysts with atomically dispersed trimetallic sites,which is intended for enhancing the ORR/OER performance in ZABs. 展开更多
关键词 bifunctional electrocatalysts Fe-Co-Ni trimetallic single-atomic sites oxygen evolution reaction oxygen reduction reaction synergetic coupling effect
在线阅读 下载PDF
A bifunctional perovskite oxide catalyst:The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping 被引量:3
2
作者 Jia Sun Lei Du +7 位作者 Baoyu Sun Guokang Han Yulin Ma Jiajun Wang Hua Huo Pengjian Zuo Chunyu Du Geping Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期217-224,共8页
ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen... ABO_(3)-type perovskite oxides(e.g.,LaCoO_(3))with flexible and adjustable A-and B-sites are ideal model catalysts to unravel the relationship between the electronic structure and electrocatalytic activity(e.g.,oxygen reduction/evolution reactions,ORR/OER).It has been well understood in our recent work that the secondary metal dopant at B-site(e.g.,Mn in LaMn_(x)Co_(1-x)O_(3))can regulate the electronic structure and improve the ORR/OER activity.In this work,the Mn-Ni pairs are employed as the dual dopant in LaMn_(x)Ni_(y)Co_(z)O_(3)(x+y+z=1)catalysts toward bifunctional ORR and OER.The structure-property relationships between the triple metal B-site(Mn,Ni and Co)and the electrochemical performance are particularly investigated.Compared to the individual Mn doping(e.g.,LaMnCoO3(Mn:Co=1:3)catalyst),the dual Mn-Ni doping significantly improves the ORR mass activity@0.8 V by 1.54 times;meanwhile,the OER overpotential@10 mA cm^(-2) is reduced from 420 to 370 mV,and the OER current density at 1.55 V is increased by 2.43 times.Reasonably,the potential gap between EDRR@-1 mA cm^(-2) and EDER@10 mA cm^(-2) is achieved as only 0.76 V by using the optimal LaMn_(x)Ni_(y)Co_(z)O_(3)(x:y:z=1:2:3)catalyst.It is revealed that the dual Mn-Ni dopant efficiently optimizes electron structures of the LaMnNiCoO_(3)(1:2:3)catalyst,which not only decreases the e_(g) orbital electron number,but also modulates the O 2 p-band closer to the Femi level,accounting for the enhanced bifunctional activity. 展开更多
关键词 Perovskite oxide Bifunctional catalyst Mn-Ni dopant oxygen reduction reaction oxygen evolution reaction
在线阅读 下载PDF
Highly Active Oxygen Evolution Integrating with Highly Selective CO_(2)-to-CO Reduction
3
作者 Chaowei Wang Laihong Geng Yingpu Bi 《Nano-Micro Letters》 2025年第8期189-201,共13页
Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seri... Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels.Herein,we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode.More specifically,the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes,resulting in one of the highest OER activities of 6.51 mA cm^(−2)(1.23 VRHE,AM 1.5G).Additionally,single-atom cobalt(II)phthalocyanine anchoring on the N-rich carbon substrates to increase Co–N coordination number remarkably promotes CO_(2) adsorption and activation for high selective CO production.Their integration achieved a record activity of 109.4μmol cm^(−2) h−1 for CO production with a faradaic efficiency of>90%,and an outstanding solar conversion efficiency of 5.41%has been achieved by further integrating a photovoltaic utilizing the sunlight(>500 nm). 展开更多
关键词 PHOTOSYNTHESIS oxygen evolution CO_(2)reduction PHOTOANODE Single-atom Co-N5
在线阅读 下载PDF
Unraveling the catalytic potential of two-dimensional conjugated metal-organic frameworks based on hexaazanaphthalene:machine learning-driven insights into the origin of oxygen evolution-reduction activity
4
作者 Qiang Zhang Xihang Zhang +3 位作者 Huizhen Jin Qingjun Zhou Fuchun Zhang Xinghui Liu 《Rare Metals》 2025年第10期7430-7448,共19页
Inspired by hexaazanaphthalene-based conjugated copper metal-organic framework(HATNA-Cu-MOF),we designed 161 HATNA-TM-MOF-based SACs(TM@N_(x)O_(4-x)-HATNA)with varying TM or ligands creating distinct coordination envi... Inspired by hexaazanaphthalene-based conjugated copper metal-organic framework(HATNA-Cu-MOF),we designed 161 HATNA-TM-MOF-based SACs(TM@N_(x)O_(4-x)-HATNA)with varying TM or ligands creating distinct coordination environments(x=0-4)with superior thermodynamic and electrochemical stabilities.Volcano plots can be constructed using(AGOOH^(*)-ΔGO^(*))/ΔGO^(*)as descriptors for oxygen evolution/reduction reaction(OER/ORR)activity,also serving as target parameters for machine learning(ML)models to identify high-performance OER/ORR catalysts.The efficient monofunctional and bifunctional electrocatalysts were successfully predicted,where the ML prediction results well matched the DFT calculation results.We employed Shapley additive explanations(SHAP)for feature analysis and utilized sure independence screening and sparsification operator(SISSO)for generalization.ML analyses reveal that TM-based OER/ORR activities predominantly correlate with three key descriptors:metallic atomic radius,d-orbital electron population,and the heat of formation of the oxide,demonstrating the pivotal role of TM's inherent electronic configuration and physicochemical characteristics in governing electrocatalytic efficacy.The constant-potential approach emphasizes the key role of electric double-layer capacitance in adjusting the kinetic barrier,where changes in the Fermi level influence the occupation of d-orbitals.Variations in electrochemical potential significantly alter the electronic structure of representative Rh@N_(1)O_(3)-HATNA,affecting both the Fermi level and adsorption properties,with the unique 4d^(8)5s^(1)configuration leading to inverted O_(2)adsorption energies as the potential decreases.This study contributes insights into the origin of oxygen evolution-reduction activity for the HATNA-TM-MOF-based SACs and reveals the fundamentals of structure-activity relationships for future applications. 展开更多
关键词 First-principles calculations Single-atom catalysts oxygen evolution/reduction reaction Machine learning Constant-potential
原文传递
Competitions between hydrogen evolution reaction and oxygen reduction reaction on an Au surface
5
作者 Yao Yao Juping Xu Minhua Shao 《Chinese Journal of Catalysis》 2025年第6期271-278,共8页
Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-prot... Hydrogen evolution reaction(HER)is unavoidable in many electrochemical synthesis systems,such as CO_(2)reduction,N2reduction,and H_(2)O_(2)synthesis.It makes those electrochemical reactions with multiple electron-proton transfers more complex when determining kinetics and mass transfer information.Understanding how HER competes with other electrochemical reduction reactions is crucial for both fundamental studies and system performance improvements.In this study,we employed the oxygen reduction reaction(ORR)as a model reaction to investigate HER competition on a polycrystalline-Au surface,using a rotating ring and disk electrode.It’s proved that water molecules serve as the proton source for ORR in alkaline,neutral,and even acidic electrolytes,and a 4-electron process can be achieved when the overpotential is sufficiently high.The competition from H⁺reduction becomes noticeable at the H⁺concentration higher than 2 mmol L^(–1)and intensi-fies as the H^(+)concentration increases.Based on the electrochemical results,we obtained an equivalent circuit diagram for the ORR system with competition from the H+reduction reaction,showing that these reactions occur in parallel and compete with each other.Electrochemical impedance spectroscopy measurements further confirm this argument.Additionally,we discover that the contribution of H+mass transfer to the total H^(+)reduction current is significant and comparable to the kinetic current.We believe this work will deepen our understanding of HER and its competition in electrochemical reduction systems. 展开更多
关键词 Hydrogen evolution reaction oxygen reduction reaction H⁺reduction competition Rotating ring and disk electrode Proton source
在线阅读 下载PDF
Proximity defect inductive effect of atomic Ni-N_(3) sites by Te atoms doping for efficient oxygen reduction and hydrogen evolution
6
作者 Min Li Xiuhui Zheng +3 位作者 Han Guo Xiang Feng Yunqi Liu Yuan Pan 《Journal of Energy Chemistry》 2025年第7期446-454,共9页
The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challen... The development of single atom catalysts(SACs)with asymmetric active sites by defect regulation provides an encourage potential for oxygen reduction reaction(ORR)and hydrogen evolution reaction(HER),but highly challenging.Herein,N-doped carbon(N-C)anchored atomically dispersed Ni-N_(3)site with proximity defects(Ni-N_(3)D)induced by Te atoms doping is reported.Benefitting from the inductive effect of proximity defect,the Ni-N_(3)D/Te-N-C catalyst performs excellent ORR and HER performance in alkaline and acid condition.Both in situ characterization and theoretical calculation reveal that the existence of proximity defect effect is conducive to lower rate-determining-step energy barrier of ORR and HER,thus accelerating the multielectron reaction kinetics.This work paves a novel strategy for constructing highactivity bifunctional SACs by defect engineering for development of sustainable energy. 展开更多
关键词 Proximity defect engineering Single atom catalyst Heteroatom doping oxygen reduction reaction Hydrogen evolution reaction
在线阅读 下载PDF
Electronic and catalytic insights into rare earth element-doped γ-NiOOH for oxygen evolution and reduction:A DFT study
7
作者 Sadaf Bibi Xiaolei Huang +8 位作者 Yanjie Wang Yanjie Li Gui Lu Xin Xia Kai Zhang Caue Ribeiro Tao He Detlef W.Bahnemann Jia Hong Pan 《Journal of Energy Chemistry》 2025年第11期581-592,I0014,共13页
The rational design of Ni-based catalysts is essential due to their abundance and low cost for advancing sustainable energy technologies,particularly for water splitting and fuel cells.This study employs spinpolarized... The rational design of Ni-based catalysts is essential due to their abundance and low cost for advancing sustainable energy technologies,particularly for water splitting and fuel cells.This study employs spinpolarized density functional theory(DFT)to examine the influence of anchoring rare-earth elements on the γ-NiOOH lattice surface,aiming to identify the optimal catalytic site for the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Following the identification of an appropriate active site through Ni vacancy,a rare earth element(REE_(1))is introduced as a dopant for single-atom catalysis(SACs).The structural,thermodynamic,and catalytic characteristics of all newly designed REE_(1)/γ-NiOOH catalysts have been extensively studied.Among the newly developed catalysts,Tb_(1)/γ-NiOOH exhibits the lowest OER overpotential of(0.36 V),while Ce_(1)/γ-NiOOH and Pr_(1)/γ-NiOOH also demonstrate excellent OER performance(0.51 and 0.41 V),respectively.Notably,Nd_(1)/γ-NiOOH and Pm_(1)/γ-NiOOH exhibit efficient ORR activity,with low overpotentials of(0.63 and 0.61 V)due to their balanced adsorption and desorption energies of intermediates.Bader charge analysis reveals strong electron donation from doped REE1to the surface.This study identified Ce_(1),Pr_(1),Nd_(1),and Tb_(1) anchoring catalysts as highly promising for water-splitting applications.Moreover,Nd_(1) and Pm_(1) doping markedly improve ORR performance,underscoring their promise for enhanced electrochemical applications in metal-air batteries.The catalytic performance of all newly developed catalysts was further evaluated using electronic descriptors.The catalytic performance was further assessed using the volcano curve and scaling relationships for the adsorbed intermediates.This study offers an extensive theoretical foundation for designing cost-effective and high-performance REE_(1)/γ-NiOOH electrocatalysts. 展开更多
关键词 Single atom catalysis(SACs) Density functional theory(DFT) oxygen evolution reaction(OER) oxygen reduction reaction c-phase NiOOH
在线阅读 下载PDF
CoFe_(2)O_(4)/CoFe loaded 3D ordered hierarchical porous N-doped carbon for efficient oxygen reduction in Zn-air battery and hydrogen evolution
8
作者 Xinlun Song Juan Zhang +3 位作者 Xiaogeng Feng Yan’ou Qi Junshuo Cui Ying Xiong 《Journal of Energy Chemistry》 2025年第7期220-230,共11页
Optimizing active sites and enhancing mass transfer capability are of paramount importance for the improvement of electrocatalyst activity.On this basis,CoFe_(2)O_(4)/CoFe nanoparticles(NPs)loaded N-doped carbon(NC)th... Optimizing active sites and enhancing mass transfer capability are of paramount importance for the improvement of electrocatalyst activity.On this basis,CoFe_(2)O_(4)/CoFe nanoparticles(NPs)loaded N-doped carbon(NC)that featured with interconnected three-dimensional(3D)ordered porous hierarchies(3DOM FeCo/NC)are prepared,and its electrocatalytic activity is studied.Due to the open structure of 3D ordered macro-pores that greatly improves the mass transfer capacity of the catalytic process and enhances the utilization of active sites inside the catalyst,as well as the uniform distribution of Fe and Co bimetallic sites on the porous skeleton,3DOM FeCo/NC exhibits superior bi-functional catalytic activities for both hydrogen evolution reaction(HER)and oxygen reduction reaction(ORR).The overpotential of HER is lower than that of commercial Pt/C when performed at high current density(>235 mA cm^(-2))in1.0 M KOH,and the half-wave potential(0.896 V)of ORR in 0.1 M KOH is also superior to that of 20% commercial Pt/C and most other similar catalysts.The effective utilization and synergistic effect of CoFe_(2)O_(4)and CoFe hetero-metallic sites remarkably enhance the electrocatalytic activity.Furthermore,3DOM FeCo/NC is assembled as an air electrode in Zn-air battery,and exhibits satisfactory maximum power density,open-circuit voltage,and charge/discharge stability over benchmark Pt/C+IrO_(2).This work contributes new insights into the design of transition-metal-based multifunctional catalysts,and has great potential for energy conversion and storage. 展开更多
关键词 3D ordered macro-pores Metal organic frameworks(MOFs) Hydrogen evolution reactions(HER) oxygen reduction reactions(ORR) Zn-air battery
在线阅读 下载PDF
Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts
9
作者 Yan Wang Jiaqi Zhang +3 位作者 Xiaofeng Wu Sibo Wang Masakazu Anpo Yuanxing Fang 《Chinese Chemical Letters》 2025年第2期196-201,共6页
Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associate... Solar-induced water oxidation reaction(WOR)for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages.WOR is also associated with important reduction reactions,such as oxygen reduction reaction(ORR),which leads to the production of hydrogen peroxide(H_(2)O_(2)).These transitions are instrumental in the emergence and evolution of life.In this study,transition metals were loaded onto nitrogen-doped carbon(NDC)prepared under the primitive Earth's atmospheric conditions.These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination.The chemical pathways initiated by the pristine and metal-loaded NDC were investigated.This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet. 展开更多
关键词 Nitrogen-doped carbon Chemical vapor deposition PHOTOCATALYSIS Water oxidation reaction oxygen reduction reaction
原文传递
Optimizing the RuCo Ratio for More Efficient and Durable Oxygen Reduction in Acidic Media
10
作者 WEI Mingrui ZHANG Shuai +1 位作者 HUANG Shuo WANG Chao 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期25-32,共8页
The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a serie... The development of Pt-free catalysts for the oxygen reduction reaction(ORR)is a great issue for meeting the cost challenges of proton exchange membrane fuel cells(PEMFCs)in commercial applications.In this work,a series of RuCo/C catalysts were synthesized by NaBH4 reduction method under the premise that the total metal mass percentage was 20%.X-ray diffraction(XRD)patterns and scanning electron microscopy(SEM)confirmed the formation of single-phase nanoparticles with an average size of 33 nm.Cyclic voltammograms(CV)and linear sweep voltammograms(LSV)tests indicated that RuCo(2:1)/C catalyst had the optimal ORR properties.Additionally,the RuCo(2:1)/C catalyst remarkably sustained 98.1% of its activity even after 3000 cycles,surpassing the performance of Pt/C(84.8%).Analysis of the elemental state of the catalyst surface after cycling using X-ray photoelectron spectroscopy(XPS)revealed that the Ru^(0) percentage of RuCo(2:1)/C decreased by 2.2%(from 66.3% to 64.1%),while the Pt^(0) percentage of Pt/C decreased by 7.1%(from 53.3% to 46.2%).It is suggested that the synergy between Ru and Co holds the potential to pave the way for future low-cost and highly stable ORR catalysts,offering significant promise in the context of PEMFCs. 展开更多
关键词 ELECTROCATALYSIS oxygen reduction DURABILITY RuCo/C fuel cell
原文传递
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
11
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions 被引量:4
12
作者 Yansong Zhu Bingsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期610-628,共19页
The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The searc... The oxygen reduction/evolution reactions(ORR/OER) are a key electrode process in the development of electrochemical energy conversion and storage devices,such as metal-air batteries and reversible fuel cells.The search for low-cost high-performance nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER alternatives to the widely-used noble metal-based catalysts is a research focus.This review aims to outline the opportunities and available options for these nanocarbon-based bifunctional electrocatalysts.Through discussion of some current scientific issues,we summarize the development and breakthroughs of these electrocatalysts.Then we provide our perspectives on these issues and suggestions for some areas in the further work.We hope that this review can improve the interest in nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for ORR/OER. 展开更多
关键词 Nanocarbon-based oxygen reduction/evolution Bifunctional electrocatalyst METAL-FREE Non-precious metal
在线阅读 下载PDF
An efficient electrode for reversible oxygen reduction/evolution and ethylene electro-production on protonic ceramic electrochemical cells
13
作者 Yangsen Xu Kang Xu +4 位作者 Hua Zhang Feng Zhu Fan He Ying Liu Yu Chen 《Science Bulletin》 CSCD 2024年第23期3682-3691,共10页
Protonic ceramic electrochemical cells(PCECs)have demonstrated great promise for applications in the generation of electricity,and the synthesis of chemicals(for example,ethylene).However,enhancing the electrochemical... Protonic ceramic electrochemical cells(PCECs)have demonstrated great promise for applications in the generation of electricity,and the synthesis of chemicals(for example,ethylene).However,enhancing the electrochemical reactions kinetics and stability of PCECs electrodes is one grand challenge.Here,we present a novel electrode material via a co-doping of cesium(Cs)and niobium(Nb)on PrBaCo_(2)O_(6-δ)with the composition of PrBa_(0.9)Cs_(0.1)Co_(1.9)Nb_(0.1)O_(6-δ)(PBCCN),which naturally decomposes into dual phases of a double-perovskite PBCCN(DP-PBCCN,~92.3 wt%)and a single-perovskite Ba_(0.9)Cs_(0.1)Co_(0.95)Nb_(0.05)O_(3-δ)(SP-BCCN,~7.7 wt%)under typical powder processing conditions.PBCCN exhibits a low area-specific resistance(ASR)value of 0.107Ωcm^(2),an outstanding performance of 2.04Wcm^(-2)in fuel cell(FC)mode,a current density of-2.84 A cm^(-2)at 1.3 V in electrolysis cell(EC)mode,and promising reversible operational durability of 53 cycles in~212 h at+/-0.5 A cm^(-2)and 650。C.Cs doping generates more oxygen vacancies and accelerates the oxygen exchange kinetics,while Nb doping effectively enhances the stability,as illustrated by the analyses of X-ray photoelectron spectroscopy,and electrical conductivity relaxations.When applied as the positrode for electrochemical non-oxidative dehydrogenation of ethane(C2H6)to ethylene(C2H4)on PCECs,it displays an encouraging C2H6 conversion of 12.75%and a C2H4 selectivity of 98.4%at 1.2 V. 展开更多
关键词 Protonic ceramic electrochemical cells Double-perovskite oxide Ethylene electro-production Electrochemical nonoxidative DEHYDROGENATION oxygen reduction/evolution reaction
原文传递
Co_3O_4 supported on N,P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions 被引量:6
14
作者 黄颖彬 张敏 +2 位作者 柳鹏 程发良 王立世 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1249-1256,共8页
Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional... Noble metals, such as platinum, ruthenium and iridium‐group metals, are often used as oxygen reduction or evolution reaction (ORR/OER) electrocatalysts. To reduce the cost and provide an application of bifunctional catalysis, in this work, cobalt oxide supported on nitrogen and phospho‐rus co‐doped carbon (Co3O4/NPC) was fabricated and examined as a bifunctional electrocatalyst for OER and ORR. To prepare Co3O4/NPC, NPC was pyrolyzed from melamine and phytic acid support‐ed on carbon, followed by the solvothermal synthesis of Co3O4 on NPC. Linear sweep voltammetry was used to evaluate the activity for OER and ORR. For OER, Co3O4/NPC showed an onset potential of 0.54 V (versus the saturated calomel electrode) and a current density of 21.95 mA/cm2 at 0.80 V, which was better than both Co3O4/C and NPC. The high activity of Co3O4/NPC was attributed to a synergistic effect of the N, P co‐dopants and Co3O4. For ORR, Co3O4/NPC exhibited an activity close to commercial Pt/C in terms of the diffusion limited current density (–4.49 vs–4.76 mA/cm2 at–0.80 V), and Co3O4 played the key role for the catalysis. Chronoamperometry (current versus time) was used to evaluate the stability, which showed that Co3O4/NPC maintained 46%current after the chronoamperometry test for OER and 95% current for ORR. Overall, Co3O4/NPC exhibited high activity and improved stability for both OER and ORR. 展开更多
关键词 Cathode catalyst oxygen reduction reaction oxygen evolution reaction Doped carbon COBALT
在线阅读 下载PDF
Interplay between the interfacial Mo–N bonds within MoC nanodot/N-doped carbon composites for efficient photocatalytic reduction of Cr(Ⅵ)and hydrogen evolution reaction
15
作者 Yufen Liu Zhi Yang +7 位作者 Yun Hau Ng Jiadong Chen Jiaxin Li Qiqi Gan Qinyou Liu Xixian Yang Yueping Fang Shengsen Zhang 《Journal of Materials Science & Technology》 2025年第12期147-156,共10页
A novel photocatalytic cocatalyst, MoC quantum dots integrated into N-doped carbon microflowers (MoC–NC), was synthesized, establishing a key Mo–N interfacial bond. The Mo–N bond's regulation was achieved by ad... A novel photocatalytic cocatalyst, MoC quantum dots integrated into N-doped carbon microflowers (MoC–NC), was synthesized, establishing a key Mo–N interfacial bond. The Mo–N bond's regulation was achieved by adjusting the pH of Mo-polydopamine precursor solutions. A composite photocatalyst, MoC–NC/CdS (MNS), was formed by in situ growth of nano-CdS on MoC–NC. The pH during synthesis, crucial for Mo–N bond formation, significantly influenced Cr(Ⅵ) reduction and H_(2) evolution performance. The optimal MNS, created at pH 9.0, demonstrated 99.2% reduction efficiency for Cr(Ⅵ) in 20 min and H_(2) evolution rate of 11.4 mmol g^(-1) h^(-1) over 3 h, outperforming Pt/CdS. Mechanistic studies and density functional theory revealed MoC–NC's role in enhancing light absorption, reaction kinetics, and electron transport, attributing to its ultra-small quantum dots and abundant Mo–N bonds. 展开更多
关键词 Photocatalysis Hydrogen evolution Cr(Ⅵ)reduction Molybdenum carbide Interfacial Mo-N chemical bond
原文传递
Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions 被引量:4
16
作者 Yue-Jun Song Jin-Tao Ren +3 位作者 Gege Yuan Yali Yao Xinying Liu Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期68-77,共10页
Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising... Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising catalysts for electrocatalytic reactions due to the earth-abundance and Pt-resembled electrical properties. In this work, taking the advantage of the interaction between the basic groups of the Mo(VI)-melamine polymer and the acidic groups on the surface of the oxidized carbon nanotubes(CNTs), N-doped CNTs supported Mo2C nanoparticles(Mo2C/NCNT) are prepared, which exhibit outstanding electrocatalytic activity and durability for both the hydrogen evolution and oxygen reduction reactions. The impressive performance of Mo2C/NCNT can be attributed to the small size of Mo2C particles, the large exposure ratio of surface sites and the presence of N-doped CNTs. This work enlarges the multi-field applications of molybdenum carbide-base materials as promising non-precious metal electrocatalysts, which is of great significance for sustainable energy-related technologies. 展开更多
关键词 N-DOPING Carbon NANOTUBES Molybdenum carbides Hydrogen evolution REACTION oxygen reduction REACTION ELECTROCATALYSIS
在线阅读 下载PDF
Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions 被引量:12
17
作者 Xiao-Meng Liu Xiaoyang Cui +7 位作者 Kamran Dastafkan Hao-Fan Wang Cheng Tang Chuan Zhao Aibing Chen Chuanxin He Minghan Han Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期290-302,I0010,共14页
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro... The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts. 展开更多
关键词 Spinel electrocatalyst Bifunctional energy electrocatalysis oxygen evolution reaction oxygen reduction reaction Structure–property relationship
在线阅读 下载PDF
Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions:Optimization strategies and mechanistic analysis 被引量:7
18
作者 Huidong Xu Jack Yang +6 位作者 Riyue Ge Jiujun Zhang Ying Li Mingyuan Zhu Liming Dai Sean Li Wenxian Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期234-265,I0008,共33页
Electrocatalysts are one of the essential components for the devices of high-efficiency green energy storage and conversion,such as metal-air cells,fuel cells,and water electrolysis systems.While catalysts made from n... Electrocatalysts are one of the essential components for the devices of high-efficiency green energy storage and conversion,such as metal-air cells,fuel cells,and water electrolysis systems.While catalysts made from noble metals possess high catalytic performance in both oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),their scarcity and expensiveness significantly limit large-scale applications.In this regard,metal-free/non-noble metal carbon-based catalysts have become competitive alternatives to replace catalysts made of noble metals.Nevertheless,low catalytic ORR/OER performance is the challenge of carbon-based catalysts for the commercial applications of metal-air batteries.To solve the problem of poor catalytic performance,two strategies have been proposed:(1)controlling the microstructure of the catalysts to expose more active sites as the channels of rapid mass and electron transfer;and(2)reducing the reaction energy barrier by optimizing the electronic structures of the catalysts via surface engineering.Here,we review different types of bifunctional ORR/OER electrocatalysts with the activated surface sites.We focus on how the challenge can be overcome with different methods of material synthesis,structural and surface characterization,performance validation/optimization,to outline the principles of surface modifications behind catalyst designs.In particular,we provide critical analysis in the challenges that we are facing in structural design and surface engineering of bifunctional ORR/OER catalysts and indicate the possible solution for these problems,providing the society with clearer ideas on the practical prospects of noble-metal-free electrocatalysts for their future applications. 展开更多
关键词 ELECTROCATALYST Bifunctionality oxygen reduction oxygen evolution Carbons transition metals Surface engineering MICROSTRUCTURE
在线阅读 下载PDF
The influence of the type of N dopping on the performance of bifunctional N-doped ordered mesoporous carbon electrocatalysts in oxygen reduction and evolution reaction 被引量:4
19
作者 Meng Li Ziwu Liu +1 位作者 Fang Wang Jinjin Xuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期422-427,共6页
To develop more ideal bifunctional heteroatom-doped carbon electrocatalysts toward the oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) for regenerative fuel cells and rechargeable metal–air batterie... To develop more ideal bifunctional heteroatom-doped carbon electrocatalysts toward the oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) for regenerative fuel cells and rechargeable metal–air batteries, herein, tobacco-derived N-containing ordered mesoporous carbon(N-OMC) electrocatalysts with different N species distributions are designed. Results indicate that the as-prepared N-OMC with more pyrrolic and pyridinic Ns exhibits much higher activities for the ORR and OER than N-OMC with more graphitic N in both acidic and alkaline media, suggesting that the increase of pyrrolic and pyridinic Ns favors the improvement of ORR and OER activities of the N-containing carbon catalysts, and showing a great potential for the designing of more effective, lower-cost ORR and OER bifunctional electrocatalysts for future regenerative fuel cells and rechargeable metal–air batteries. 展开更多
关键词 Nitrogen-containing mesoporous carbon Nitrogen species Bifunctional electrocatalysts oxygen reduction reaction oxygen evolution reaction
在线阅读 下载PDF
Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium 被引量:3
20
作者 Xiaoxia Chen Xiangjun Zhen +6 位作者 Hongyu Gong Le Li Jianwei Xiao Zhi Xu Deyue Yan Guyu Xiao Ruizhi Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第3期681-685,共5页
Cobalt and nitrogen codoped carbon materials(Co-N-C) were fabricated by pyrolysis of the mixture of poly(4-vinylpyridine) and cobalt chloride using SiO_2 nanoparticles as hard template, which were the first transition... Cobalt and nitrogen codoped carbon materials(Co-N-C) were fabricated by pyrolysis of the mixture of poly(4-vinylpyridine) and cobalt chloride using SiO_2 nanoparticles as hard template, which were the first transition metal/nitrogen-codoped carbon bifunctional electrocatalyst derived from noncarbonizable polymer for ORR and HER. The as-made Co-N-C possessed hierarchical pore structure and high specific surface area, achieving excellent electrocatalytic performances for ORR and HER. Its ORR catalytic performances were comparable to those of Pt/C catalyst and its HER catalytic performances were superior to those of most doped carbon catalysts in KOH electrolyte. Moreover, its bifunctional electrocatalytic performances for ORR and HER were better than those of most bifunctional doped carbon catalysts in alkaline electrolyte. 展开更多
关键词 Carbon COBALT and NITROGEN Doped oxygen reduction REACTION Hydrogen evolution REACTION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部