High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electro...High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electrocatalysts with rich active sites through classical metallurgical methods is still a challenge.Here,a self-supporting porous FeCoNi MEA electrocatalyst with nanosheets-shaped surface for oxygen evolution reaction(OER)was prepared by a one-step electrochemical process from the metal oxides in molten CaCl_(2).The formation of the FeCoNi MEA is attributed to the oxides electro-reduction,high-temperature diffusion and solid solution.Additionally,the morphology and structure of the FeCoNi MEA can be precisely controlled by adjusting the electrolysis time and temperature.The electronic structure regulation and the reduced energy barrier of OER from the“cocktail effect”,the abundant exposed active sites brought by surface ultrathin nanosheets,the good electronic conductivity and electrochemical stability from the self-supporting structure enable the FeCoNi MEA electrode shows high-performance OER electrocatalysis,exhibiting a low overpotential of 233 mV at a current density of 10 mA cm^(-2),a low Tafel slope of 29.8 mV dec^(-1),and an excellent stability for over 500 h without any obvious structural destruction.This work demonstrates a facile one-step electrochemical metallurgical approach for fabricating self-supporting HEAs/MEAs electrocatalysts with nanosized surface for the application in water electrolysis.展开更多
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality...The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.展开更多
The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electro...The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.展开更多
The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc m...The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc melting method.In this paper,homogeneous powdery face centered cubic(FCC)phase Fe_(0.5)CoNiCuZn_(x) HEAs were prepared by the electrolysis of metal oxides in molten Na_(2)CO_(3)-K_(2)CO_(3) using a stable Ni11Fe10Cu inert oxygen-evolution anode.The use of oxide precursors and relatively low synthetic temperature are beneficial to efficiently preparing HEAs that contain highly volatile elements such as Zn.Moreover,the microstructures and compositions of the electrolytic HEAs can be easily tailored by adjusting the components of oxide precursors,then further regulating its properties.Thus,the electrocatalytic activity of Fe_(0.5)Co NiCuZn_(x) HEAs towards oxygen evolution reactions(OER)was investigated in 1 M KOH.The results show that Zn promotes the OER activity of Fe_(0.5)CoNiCuZn_(x) HEAs,i.e.,the HEA(Zn_(0.8))shows the best OER activity exhibiting a low overpotential of 340 m V at 10 m A/cm^(2) and excellent stability of 24 h.Hence,molten salt electrolysis not only provides a green approach to prepare Fe_(0.5)CoNiCuZn_(x) HEAs but also offers an effective way to regulate the structure of the alloys and thereby optimizes the electrocatalytic activities for water electrolysis.展开更多
Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial a...Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements.展开更多
Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped g...Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process.展开更多
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th...Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts.展开更多
Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). Th...Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.展开更多
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ...Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts.展开更多
In recent years,extensiveresearch and development have been conducted on renewable energies to overcome the problems caused by fossil fuel consumption.In the meantime,the production of hydrogen energy through electroc...In recent years,extensiveresearch and development have been conducted on renewable energies to overcome the problems caused by fossil fuel consumption.In the meantime,the production of hydrogen energy through electrochemical water spltting(EWS)has been limited by various challenges,such as high required overpotential.Additionally,other methods of hydrogen production may lead to environmental problems,such as greenhouse gas emissions.Effective electrocatalysts can significantly mitigate the EWS challenges.Oxy-hydroxide compoundspossess unique properties that make them effective electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Additionally,the utilizationof the electrodeposition method,a binder-free technique,enables the production of electrodes exhibiting favorable electrocatalytic activity and stability.This review article provides an overview of the challenges associated with the EWS technique,highlighting the importance of transition metal oxy-hydroxide electrodes in facilitating the HER and OER reactions.Additionally,the paper evaluates the effectiveness of fabricated transition metal oxy-hydroxide electrodes through electrodeposition and suggests potential areas for future research on Ews.展开更多
Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional th...Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy...Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.展开更多
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3...Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.展开更多
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int...Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.展开更多
Oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are key catalytic processes in various renewable energy conversion and energy storage technologies.Herein,we systematically investigated the ORR and OER ...Oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are key catalytic processes in various renewable energy conversion and energy storage technologies.Herein,we systematically investigated the ORR and OER catalytic activity of the single-atom catalysts(SACs)composed of 4d/5d period transition metal(TM)atoms embedded on MBene substrates(TM-M_(2)B_(2)O_(2),M=Ti,Mo,and W).We found that TM dominates the catalytic activity compared to the MBene substrates.The SACs embedded with Rh,Pd,Au,and Ir exhibit excellent ORR or OER catalytic activity.Specifically,Rh-Mo2B2O2and Rh-W2B2O2are promising bifunctional catalysts with ultra-low ORR/OER overpotentials of 0.39/0.21 V and0.19/0.32 V,respectively,lower than that of Pt/RuO_(2)(0.45/0.42 V).Importantly,through machine learning,the models containing 10 element features of SACs were developed to quickly and accurately identify the superior ORR and OER electrocatalysts.Our findings provide several promising SACs for ORR and OER,and offer effective models for catalyst design.展开更多
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec...The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.展开更多
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o...Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2).展开更多
Electrochemical oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)are two impor-tant half-cell reactions for overall water splitting.The rational design and fabrication of efficient electro-catalysts i...Electrochemical oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)are two impor-tant half-cell reactions for overall water splitting.The rational design and fabrication of efficient electro-catalysts involving nonprecious-metals and carbon matrix is highly attractive.Herein,a series of N-doped carbon nanotubes encapsulated FeNi alloy nanoparticles(FeNi@NCNTs)are synthesized via a simple py-rolysis treatment of Fe-doped Ni(OH)_(2)precursors under the assistance of dicyandiamine source.The re-sults reveal that the Fe/Ni ratio has an obvious influence on the morphology and phase composition of FeNi@NCNTs series,thus affecting the electrocatalytic performance.The highest electrocatalytic activity is achieved for the Fe1 Ni4@NCNTs product with a Fe/Ni molar ratio of 1:4,which delivers low overpoten-tials of 278 and 279 mV for OER and HER at 10 mA cm^(−2)in 1.0 mol/L KOH,respectively.The intriguing electrocatalytic performance is mainly ascribed to the advantageous integration of rambutan-like hier-archically porous structure and composition optimization,significantly facilitating the fast mass/charge transfer as well as promoting the adsorption ability for intermediates.The present method may open a facile avenue for developing cost-effective,high-activity,and stable electrocatalysts for the application of overall water splitting.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52022054,51974181,52004155,52004157,52374307,52304331,52334009)the National Key Research and Development Program of China(No.2022YFC2906100)+4 种基金the China Postdoctoral Science Foundation(No.2022M712023)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD48)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(No.TP2019041)the“Shuguang Program”supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission(No.21SG42).
文摘High/medium entropy alloys(HEAs/MEAs)with high electrocatalytic activity have attracted great attention in water electrolysis applications.However,facile synthesis of self-supporting high/medium entropy alloys electrocatalysts with rich active sites through classical metallurgical methods is still a challenge.Here,a self-supporting porous FeCoNi MEA electrocatalyst with nanosheets-shaped surface for oxygen evolution reaction(OER)was prepared by a one-step electrochemical process from the metal oxides in molten CaCl_(2).The formation of the FeCoNi MEA is attributed to the oxides electro-reduction,high-temperature diffusion and solid solution.Additionally,the morphology and structure of the FeCoNi MEA can be precisely controlled by adjusting the electrolysis time and temperature.The electronic structure regulation and the reduced energy barrier of OER from the“cocktail effect”,the abundant exposed active sites brought by surface ultrathin nanosheets,the good electronic conductivity and electrochemical stability from the self-supporting structure enable the FeCoNi MEA electrode shows high-performance OER electrocatalysis,exhibiting a low overpotential of 233 mV at a current density of 10 mA cm^(-2),a low Tafel slope of 29.8 mV dec^(-1),and an excellent stability for over 500 h without any obvious structural destruction.This work demonstrates a facile one-step electrochemical metallurgical approach for fabricating self-supporting HEAs/MEAs electrocatalysts with nanosized surface for the application in water electrolysis.
基金support from the National Natural Science Foundation of China(No.22005147)Dr.You acknowledges the financial support from the National Key Research and Development Program of China(2021YFA1600800)+1 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST),Ministry of Education(2021JYBKF03).
文摘The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
基金supported by the Natural Scientific Foundation of China (21825501)National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102)+1 种基金Australian Research Council (DP160103107, FT170100224)Tsinghua University Initiative Scientific Research Program。
文摘The demand for efficient and environmentally-benign electrocatalysts that help availably harness the renewable energy resources is growing rapidly. In recent years, increasing insights into the design of water electrolysers, fuel cells, and metal–air batteries emerge in response to the need for developing sustainable energy carriers, in which the oxygen evolution reaction and the oxygen reduction reaction play key roles. However, both reactions suffer from sluggish kinetics that restricts the reactivity. Therefore, it is vital to probe into the structure of the catalysts to exploit high-performance bifunctional oxygen electrocatalysts. Spinel-type catalysts are a class of materials with advantages of versatility, low toxicity, low expense, high abundance, flexible ion arrangement, and multivalence structure. In this review, we afford a basic overview of spinel-type materials and then introduce the relevant theoretical principles for electrocatalytic activity, following that we shed light on the structure–property relationship strategies for spinel-type catalysts including electronic structure, microstructure, phase and composition regulation,and coupling with electrically conductive supports. We elaborate the relationship between structure and property, in order to provide some insights into the design of spinel-type bifunctional oxygen electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.51874211,52031008)the Fundamental Research Funds for the Central Universities(No.2042020kf0219)。
文摘The properties of high entropy alloys(HEAs)depend on their phase structures and compositions.However,it is difficult to control the composition of the HEAs that contain highly volatile metals by the conventional arc melting method.In this paper,homogeneous powdery face centered cubic(FCC)phase Fe_(0.5)CoNiCuZn_(x) HEAs were prepared by the electrolysis of metal oxides in molten Na_(2)CO_(3)-K_(2)CO_(3) using a stable Ni11Fe10Cu inert oxygen-evolution anode.The use of oxide precursors and relatively low synthetic temperature are beneficial to efficiently preparing HEAs that contain highly volatile elements such as Zn.Moreover,the microstructures and compositions of the electrolytic HEAs can be easily tailored by adjusting the components of oxide precursors,then further regulating its properties.Thus,the electrocatalytic activity of Fe_(0.5)Co NiCuZn_(x) HEAs towards oxygen evolution reactions(OER)was investigated in 1 M KOH.The results show that Zn promotes the OER activity of Fe_(0.5)CoNiCuZn_(x) HEAs,i.e.,the HEA(Zn_(0.8))shows the best OER activity exhibiting a low overpotential of 340 m V at 10 m A/cm^(2) and excellent stability of 24 h.Hence,molten salt electrolysis not only provides a green approach to prepare Fe_(0.5)CoNiCuZn_(x) HEAs but also offers an effective way to regulate the structure of the alloys and thereby optimizes the electrocatalytic activities for water electrolysis.
基金supported by Army Research O ce(ARO)under Grant W911NF-16-1-0198the National Science Foundation(DMR-1709025)China Scholarship Council
文摘Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements.
基金financially supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515110473 and 2019A1515110528)。
文摘Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process.
基金support from the Natural Science Foundation of Shanghai (20ZR1464000)G.Zeng acknowledges the support from the National Natural Science Foundation of China (21878322,22075309)the Science and Technology Commission of Shanghai Municipality (19ZR1479200,22ZR1470100)。
文摘Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts.
基金financially supported by the Key Program of the Chinese Academy of Science(grant no.KGZD-EW-T08)the National Basic Research Program of China(973 Program,2012CB215500)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(grant no.XDA09030104)
文摘Carbon supported gold-iridium composite(Au Ir/C) was synthesized by a facile one-step process and was investigated as the bifunctional catalyst for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The physical properties of the Au Ir/C composite were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). Although the Au and Ir in the Au Ir/C did not form alloy, it is clear that the introduction of Ir decreases the average Au particle size to 4.2 nm compared to that in the Au/C(10.1 nm). By systematical analysis on chemical state of metal surface via XPS and the electrochemical results, it was found that the Au surface for the Au/C can be activated by potential cycling from 0.12 V to 1.72 V, resulting in the increased surface roughness of Au,thus improving the ORR activity. By the same potential cycling, the Ir surface of the Ir/C was irreversibly oxidized, leading to degraded ORR activity but uninfluenced OER activity. For the Au Ir/C, Ir protects Au against being oxidized due to the lower electronegativity of Ir. Combining the advantages of Au and Ir in catalyzing ORR and OER, the Au Ir/C catalyst displays an enhanced catalytic activity to the ORR and a comparable OER activity. In the 50-cycle accelerated aging test for the ORR and OER, the Au Ir/C displayed a satisfied stability, suggesting that the Au Ir/C catalyst is a potential bifunctional catalyst for the oxygen electrode.
基金supported by the National Research Foundation of Korea (NRF-2022R1C1C1004171)supported by the National Science Foundation (Grant number ACI1548562)。
文摘Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts.
基金This research was funded by Iran National Science Foundation(INSF)under project(No.4024998).
文摘In recent years,extensiveresearch and development have been conducted on renewable energies to overcome the problems caused by fossil fuel consumption.In the meantime,the production of hydrogen energy through electrochemical water spltting(EWS)has been limited by various challenges,such as high required overpotential.Additionally,other methods of hydrogen production may lead to environmental problems,such as greenhouse gas emissions.Effective electrocatalysts can significantly mitigate the EWS challenges.Oxy-hydroxide compoundspossess unique properties that make them effective electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Additionally,the utilizationof the electrodeposition method,a binder-free technique,enables the production of electrodes exhibiting favorable electrocatalytic activity and stability.This review article provides an overview of the challenges associated with the EWS technique,highlighting the importance of transition metal oxy-hydroxide electrodes in facilitating the HER and OER reactions.Additionally,the paper evaluates the effectiveness of fabricated transition metal oxy-hydroxide electrodes through electrodeposition and suggests potential areas for future research on Ews.
基金supported by the National Natural Science Foundation of China(Nos.22102167 and U21A20317)。
文摘Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
文摘Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts.
基金Research Institute for Smart Energy(CDB2)the grant from the Research Institute for Advanced Manufacturing(CD8Z)+4 种基金the grant from the Carbon Neutrality Funding Scheme(WZ2R)at The Hong Kong Polytechnic Universitysupport from the Hong Kong Polytechnic University(CD9B,CDBZ and WZ4Q)the National Natural Science Foundation of China(22205187)Shenzhen Municipal Science and Technology Innovation Commission(JCYJ20230807140402006)Start-up Foundation for Introducing Talent of NUIST and Natural Science Foundation of Jiangsu Province of China(BK20230426).
文摘Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts.
基金financially supported by the National Natural Science Foundation of China(22309137,22279095)Open subject project State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2023001).
文摘Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
基金supported by the National Key Research and Development Program of China(2022YFB3807200)
文摘Oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are key catalytic processes in various renewable energy conversion and energy storage technologies.Herein,we systematically investigated the ORR and OER catalytic activity of the single-atom catalysts(SACs)composed of 4d/5d period transition metal(TM)atoms embedded on MBene substrates(TM-M_(2)B_(2)O_(2),M=Ti,Mo,and W).We found that TM dominates the catalytic activity compared to the MBene substrates.The SACs embedded with Rh,Pd,Au,and Ir exhibit excellent ORR or OER catalytic activity.Specifically,Rh-Mo2B2O2and Rh-W2B2O2are promising bifunctional catalysts with ultra-low ORR/OER overpotentials of 0.39/0.21 V and0.19/0.32 V,respectively,lower than that of Pt/RuO_(2)(0.45/0.42 V).Importantly,through machine learning,the models containing 10 element features of SACs were developed to quickly and accurately identify the superior ORR and OER electrocatalysts.Our findings provide several promising SACs for ORR and OER,and offer effective models for catalyst design.
基金supported by the National Natural Science Foundation of China(22209040,22202063).
文摘The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts.
文摘Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2).
基金supported by the National Natural Science Foundation of China(No.22279047).
文摘Electrochemical oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)are two impor-tant half-cell reactions for overall water splitting.The rational design and fabrication of efficient electro-catalysts involving nonprecious-metals and carbon matrix is highly attractive.Herein,a series of N-doped carbon nanotubes encapsulated FeNi alloy nanoparticles(FeNi@NCNTs)are synthesized via a simple py-rolysis treatment of Fe-doped Ni(OH)_(2)precursors under the assistance of dicyandiamine source.The re-sults reveal that the Fe/Ni ratio has an obvious influence on the morphology and phase composition of FeNi@NCNTs series,thus affecting the electrocatalytic performance.The highest electrocatalytic activity is achieved for the Fe1 Ni4@NCNTs product with a Fe/Ni molar ratio of 1:4,which delivers low overpoten-tials of 278 and 279 mV for OER and HER at 10 mA cm^(−2)in 1.0 mol/L KOH,respectively.The intriguing electrocatalytic performance is mainly ascribed to the advantageous integration of rambutan-like hier-archically porous structure and composition optimization,significantly facilitating the fast mass/charge transfer as well as promoting the adsorption ability for intermediates.The present method may open a facile avenue for developing cost-effective,high-activity,and stable electrocatalysts for the application of overall water splitting.