期刊文献+
共找到426篇文章
< 1 2 22 >
每页显示 20 50 100
Highly Active Oxygen Evolution Integrating with Highly Selective CO_(2)-to-CO Reduction
1
作者 Chaowei Wang Laihong Geng Yingpu Bi 《Nano-Micro Letters》 2025年第8期189-201,共13页
Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seri... Artificial carbon fixation is a promising pathway for achieving the carbon cycle and environment remediation.However,the sluggish kinetics of oxygen evolution reaction(OER)and poor selectivity of CO_(2) reduction seriously limited the overall conversion efficiencies of solar energy to chemical fuels.Herein,we demonstrated a facile and feasible strategy to rationally regulate the coordination environment and electronic structure of surface-active sites on both photoanode and cathode.More specifically,the defect engineering has been employed to reduce the coordination number of ultrathin FeNi catalysts decorated on BiVO4 photoanodes,resulting in one of the highest OER activities of 6.51 mA cm^(−2)(1.23 VRHE,AM 1.5G).Additionally,single-atom cobalt(II)phthalocyanine anchoring on the N-rich carbon substrates to increase Co–N coordination number remarkably promotes CO_(2) adsorption and activation for high selective CO production.Their integration achieved a record activity of 109.4μmol cm^(−2) h−1 for CO production with a faradaic efficiency of>90%,and an outstanding solar conversion efficiency of 5.41%has been achieved by further integrating a photovoltaic utilizing the sunlight(>500 nm). 展开更多
关键词 PHOTOSYNTHESIS oxygen evolution CO_(2)reduction PHOTOANODE Single-atom Co-N5
在线阅读 下载PDF
2D coordination polymers of transition metals as catalysts for oxygen evolution reaction
2
作者 Mikhail N.Khrizanforov Anastasiia P.Samorodnova +5 位作者 Ilya A.Bezkishko Radis R.Gainullin Kirill V.Kholin Aidar T.Gubaidullin Ruslan P.Shekurov Vasili A.Miluykov 《Materials Reports(Energy)》 2025年第2期77-85,I0002,共10页
The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic... The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis. 展开更多
关键词 oxygen evolution reaction 2D coordination polymers Ferrocenyl phosphinate ligands ELECTROCATALYSIS Water splitting Surface morphology OVERPOTENTIAL Catalytic stability
在线阅读 下载PDF
Fabrication of Ti/SnO_(x)/MnO_(2) anodes with enhanced catalytic performance for oxygen evolution reactions
3
作者 Ya CHEN Yuan-he JIANG +2 位作者 Peng-hui PING Jiu-qing LIU Xi-chang SHI 《Transactions of Nonferrous Metals Society of China》 2025年第3期921-931,共11页
This work is devoted to the development of a low cost dimensionally stable anode with high oxygen evolution catalytic activity for practical applications.For this purpose,a Ti/SnO_(x)/MnO_(2) anode was fabricated thro... This work is devoted to the development of a low cost dimensionally stable anode with high oxygen evolution catalytic activity for practical applications.For this purpose,a Ti/SnO_(x)/MnO_(2) anode was fabricated through an innovative strategy involving Sn electrodeposition,oxidation,and MnO_(2)-layer preparation.The structure of the anode was characterized,and the oxygen evolution performance was evaluated in a H_(2)SO_(4) solution.The results show that compared with the Ti/SnO_(2)/MnO_(2) anode prepared by the conventional brushing-annealing process,the Ti/SnO_(x)/MnO_(2) anode fabricated through the innovative procedure exhibits a lower oxygen evolution potential and a nearly 40%longer accelerated lifespan.The superior oxygen evolution performance of the Ti/SnO_(x)/MnO_(2) anode is attributed to the distinctive SnO_(x) intermediate layer fabricated through Sn electrodeposition followed by oxidation,which indicates the great potential of the anode as a dimensionally stable anode for metal electrowinning and hydrogen production by electrolysis,etc. 展开更多
关键词 dimensionally stable anode oxygen evolution catalytic performance SnO_(2)intermediate layer MnO_(2)catalyst
在线阅读 下载PDF
Coupling NiFe alloy/LDH and Mo_(2)CT_(x)MXene for enhanced oxygen evolution
4
作者 Hong-Xiao Yang Wenkang Xu +7 位作者 Pei-Wei Zhong Dongliang Zhang Zhiyang Yu Bei Li Hongjuan Wang Yonghai Cao Hao-Fan Wang Hao Yu 《Journal of Energy Chemistry》 2025年第6期121-129,I0004,共10页
The oxygen evolution reaction(OER)has received widespread attention as an anodic reaction in various key electrochemical processes such as water splitting,carbon dioxide electroreduction,and ammonia electrosynthesis.T... The oxygen evolution reaction(OER)has received widespread attention as an anodic reaction in various key electrochemical processes such as water splitting,carbon dioxide electroreduction,and ammonia electrosynthesis.Therefore,there is an urgent need for efficient non-precious OER electrocatalysts to reduce the energy consumption and cost of these processes.NiFe layered double hydroxides(LDHs)with tunable electronic structure properties exhibit excellent OER intrinsic activity.However,their low electrical conductivity and tendency to agglomerate during electrocatalysis hinder their performance in OER.Herein,benefiting from the attraction of abundant negatively charged groups on the MXene surface towards Ni^(2+)and Fe^(3+),a heterostructure of highly conductive Mo_(2)CT_(x)MXene and NiFe alloy/LDH composite was prepared using a simple in-situ growth strategy.Combining experimental results and theoretical calculations,it is revealed that Mo_(2)CT_(x)MXene,as a substrate,significantly improves the OER performance of the NiFe-based catalyst by enhancing the electrical conductivity,mitigating the agglomeration,accelerating the oxidation and tuning the electronic structure.Consequently,in 1 M KOH electrolyte,the overpotential required to reach an OER current density of 10 mA cm^(-2)is only 230 mV,and the catalyst maintains high stability even after 3000 cyclic voltammetry cycles.This work expands the application of Mo_(2)CT_(x)MXene in electrocatalysis,and provides useful experience for the regulation of LDH-based electrocatalysts. 展开更多
关键词 oxygen evolution reaction NiFe-based catalyst Mo_(2)CT_(x)MXene Electronic structure
在线阅读 下载PDF
Dual-shell hollow nanospheres NiCo_(2)S_(4)@CoS_(2)/MoS_(2): Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption- desorption and lattice oxygen oxidation
5
作者 Yang Chen Yu Tang +4 位作者 Leiyun Han Jiayan Liu Yingjie Hua Xudong Zhao Xiaoyang Liu 《Chinese Journal of Catalysis》 2025年第7期394-410,共17页
Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as se... Activating both metal and lattice oxygen sites for efficient oxygen evolution reactions(OER)is a critical challenge.This study pioneers a novel approach,employing cobalt-nickel glycerate solid spheres(CoNi-G SSs)as self-sacrificial templates to synthesize yolk-shell structured CoNi-G SSs@ZIF-67 nanospheres.The derived NiCo2S4@CoS2/MoS2 double-shelled hollow nanospheres integrate the adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM),enabling synergistic dual catalytic pathways.Nickel modulation facilitates active species reconstruction in NiCo_(2)S_(4),enhancing lattice oxygen activity and optimizing the LOM pathway.Characterization results indicate that anode activation triggered the redox processes of metal and lattice oxygen sites,involving the formation and re-filling of oxygen vacancies.Additionally,the CoS_(2)/MoS_(2) heterostructure enhances the AEM pathway,as supported by density functional theory calculations,which demonstrate optimized adsorption of intermediates for both hydrogen evolution reaction and OER.The assembled anion exchange membrane water splitting device can deliver a catalytic current of 500 mA cm^(-2) at 1.74 V under commercial catalytic operating conditions(1 mol L^(-1) KOH)for 150 h,with negligible degradation.This work provides important insights into the understanding of OER mechanisms and the design of high-performance water-splitting electrocatalysts,while also opening new avenues for developing multifunctional materials with multi-shell structures. 展开更多
关键词 Adsorbate evolution mechanism Lattice oxygen mechanism WATER-SPLITTING ZIF-67 NiCo_(2)S_(4)@CoS_(2)/MoS_(2) Dual-shell hollow nanospheres
在线阅读 下载PDF
Microwave shock motivating the Sr substitution of 2D porous GdFeO_(3) perovskite for highly active oxygen evolution 被引量:1
6
作者 Jinglin Xian Huiyu Jiang +10 位作者 Zhiao Wu Huimin Yu Kaisi Liu Miao Fan Rong Hu Guangyu Fang Liyun Wei Jingyan Cai Weilin Xu Huanyu Jin Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期232-241,I0006,共11页
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ... The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite. 展开更多
关键词 2D materials PEROVSKITE MICROWAVE ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis 被引量:1
7
作者 Jieli Chen Xiaodong Shi +7 位作者 Suyang Feng Jing Li Xiaohong Gao Xiao Wu Ke Li Anyuan Qi Chenghang You Xinlong Tian 《Nano Materials Science》 EI CAS CSCD 2024年第4期413-418,共6页
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstr... High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis. 展开更多
关键词 NiFe-LDH/V_(2)CT_(x)/NF catalyst oxygen evolution reaction Seawater electrolysis Chlorine inhibition
在线阅读 下载PDF
Oxygen Evolution Behavior of PTFE-F-PbO2 Electrode in H2SO4 Solution 被引量:8
8
作者 童少平 张铁明 马淳安 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第6期885-889,共5页
F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. Th... F-PbO2 electrode and polytetrafluoroethylene (PTFE) doped F-PbO2 electrode (PTFE-F-PbO2) were prepared on a plexiglas sheet substrate by a series of procedure including chemical and electrochemical depositions. The electrochemical activities of these two electrodes for oxygen evolution (OE) reaction were examined by electrochemical tests. In comparison with F-PbO2, PTFE-F-PbO2 electrode exhibited larger active surface area and higher oxygen vacancy deficiency, which resulted in its higher electrocatalytic activity for OE. In addition, both exchange current density and activation energy of the electrodes for OE were calculated in terms of active surface area. The values of exchange current density and activation energy in 0.5 mol·L^-1 H2SO4 aqueous solution were 1.125×10^ -3 mA·cm^-2 and 18.62 kJ·mol^-1 for PTFE-F-PbO2, and 8.384×10^-4 mA·cm^- 2 and 28.98 kJ·mol^-1 for F-PbO2, respectively. Because these values are calculated on the basis of the active surface areas of the electrodes, the enhanced activity of PTFE-F-PbO2 can be attributed to an increase in oxygen vacancy deficiency of PbO2 due to doping by PTFE. The influence of PTFE adulteration on the activity of PbO2 film electrode for OE was investigated in detail in this study. 展开更多
关键词 F-Pbo2 polytetrafluoroethylene oxygen evolution electrocatalytic activity
在线阅读 下载PDF
Electrochemical behavior and corrosion resistance of IrO2–ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution 被引量:7
9
作者 Bao Liu Shuo Wang +2 位作者 Cheng-yan Wang Bao-zhong Ma Yong-qiang Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期264-273,共10页
In this study,we prepared Ti/IrO2–ZrO2 electrodes with different ZrO2 contents using zirconium-n-butoxide(C16H36O4Zr)and chloroiridic acid(H2IrCl6)via a sol–gel route.To explore the effect of ZrO2 content on the sur... In this study,we prepared Ti/IrO2–ZrO2 electrodes with different ZrO2 contents using zirconium-n-butoxide(C16H36O4Zr)and chloroiridic acid(H2IrCl6)via a sol–gel route.To explore the effect of ZrO2 content on the surface properties and electrochemical behavior of electrodes,we performed physical characterizations and electrochemical measurements.The obtained results revealed that the binary oxide coating was composed of rutile IrO2,amorphous ZrO2,and an IrO2–ZrO2 solid solution.The IrO2–ZrO2 binary oxide coatings exhibited cracked structures with flat regions.A slight incorporation of ZrO2 promoted the crystallization of the active component IrO2.However,the crystallization of IrO2 was hindered when the added ZrO2 content was greater than 30at%.The appropriate incorporation of ZrO2 enhanced the electrocatalytic performance of the pure IrO2 coating.The Ti/70at%IrO2–30at%ZrO2 electrode,with its large active surface area,improved electrocatalytic activity,long service lifetime,and especially,lower cost,is the most effective for promoting oxygen evolution in sulfuric acid solution. 展开更多
关键词 ELECTRODE Iro2-Zro2 oxygen evolution reaction electrochemical behavior corrosion resistance
在线阅读 下载PDF
Supporting IrO2 and IrRuOx nanoparticles on TiO2 and Nb-doped TiO2 nanotubes as electrocatalysts for the oxygen evolution reaction 被引量:3
10
作者 Radostina V.Genova-Koleva Francisco Alcaide +4 位作者 Garbine Alvarez Pere L.Cabot Hans-Jürgen Grande María V.Martínez-Huerta Oscar Miguel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期227-239,共13页
IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and character... IrO2 and IrRuOx(Ir:Ru 60:40 at%),supported by 50 wt%onto titania nanotubes(TNTs)and(3 at%Nb)Nb-doped titania nanotubes(Nb-TNTs),as electrocatalysts for the oxygen evolution reaction(OER),were synthesized and characterized by means of structural,surface analytical and electrochemical techniques.Nb doping of titania significantly increased the surface area of the support from 145(TNTs)to 260 m2g-1(Nb-TNTs),which was significantly higher than those of the Nb-doped titania supports previously reported in the literature.The surface analytical techniques showed good dispersion of the catalysts onto the supports.The X-ray photoelectron spectroscopy analyses showed that Nb was mainly in the form of Nb(IV)species,the suitable form to behave as a donor introducing free electrons to the conduction band of titania.The redox transitions of the cyclic voltammograms,in agreement with the XPS results,were found to be reversible.Despite the supported materials presented bigger crystallite sizes than the unsupported ones,the total number of active sites of the former was also higher due to their better catalyst dispersion.Considering the outer and the total charges of the cyclic voltammograms in the range 0.1–1.4 V,stability and electrode potentials at given current densities,the preferred catalyst was Ir O2 supported on the Nb-TNTs.The electrode potentials corresponding to given current densities were between the smallest ones given in the literature despite the small oxide loading used in this work and its Nb doping,thus making the Nb-TNTs-supported IrO2 catalyst a promising candidate for the OER.The good dispersion of IrO2,high specific surface area of the Nb-doped supports,accessibility of the electroactive centers,increased stability due to Nb doping and electron donor properties of the Nb(IV)oxide species were considered the main reasons for its good performance. 展开更多
关键词 Nb-doped TIo2 NANOTUBES Iro2 CATALYST IrRuOx CATALYST oxygen evolution reaction PEMWE
在线阅读 下载PDF
Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment
11
作者 李涛 凌帅 +1 位作者 ZHONG Shujie LOU Qiongyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期320-326,共7页
Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment... Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2). 展开更多
关键词 NICU NANOALLOY Ni_(3)S_(2) structure transformation oxygen evolution reaction
原文传递
Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution 被引量:2
12
作者 Hang Zhao Zhangqian Liang +3 位作者 Xiang Liu Pengyuan Qiu Hongzhi Cui Jian Tian 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期333-340,共8页
Herein, novel plasmonic Bi metal in situ deposited in reduced Ti O2 microspheres(Bi@R-Ti O2) are fabricated via a bimetallic MOF-derived synthesized strategy by adjusting the synthesizing temperature. Different charac... Herein, novel plasmonic Bi metal in situ deposited in reduced Ti O2 microspheres(Bi@R-Ti O2) are fabricated via a bimetallic MOF-derived synthesized strategy by adjusting the synthesizing temperature. Different characterization techniques, including XRD, SEM, TEM, XPS, DRS, PL, EIS, and photocurrent generation, are performed to investigate the structural and optical properties of the as-prepared samples. The results indicate that the Bi particles are generated inside and outside of reduced Ti O2 microspheres via the reduction of Ti4+ and Bi3+ by ethylene glycol. When the annealing temperature is controlled at 300 o C, the corresponding Bi@R-Ti O2-300 sample with an appropriate amount of Bi nanoparticles exhibits the highest full solar spectrum photocatalytic oxygen evolution activity(4728.709 μmol h–1 g–1), which is 5.9 and 9.5 times higher than that of pure Ti O2 and Bi-Ti bimetal organic frameworks(Bi-Ti-MOFs). Several reasons are suggested for the above results:(1) Bi metal behaves as an "electron acceptor" to accelerate the charge carrier transfer from Ti O2 to Bi;(2) The surface plasmon resonance effect of loaded metallic Bi particles can enhance the visible and NIR light absorption capacity;(3) The generation of Ti3+ further narrows the band gap of TiO2. 展开更多
关键词 Bi nanoparticles Full solar spectrum o2 evolution PHOTOCATALYSIS Porous microspheres
在线阅读 下载PDF
Electronic structure regulation of Fe-doped Ni2P nanocrystals towards durable electrocatalytic oxygen evolution
13
作者 Ya Liu Xing Cao +10 位作者 Jia-Jia Liu Mei-Sheng Han Gao-Wei Zhang Yu-Bin Zhao Huan-Hui Chen Liang Yu Jun-Rong Zeng Zhi-Kai Cheng Liu-Biao Zhong Li-Juan Song Ye-Jun Qiu 《Rare Metals》 CSCD 2024年第12期6405-6415,共11页
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos... The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts. 展开更多
关键词 Electronic structure regulation Fe doping Colloidal nanocrystals NI2P oxygen evolution reaction
原文传递
Ru@RuO2 Core-Shell Nanorods: A Highly Active and Stable Bifunctional Catalyst for Oxygen Evolution and Hydrogen Evolution Reactions 被引量:3
14
作者 Rongzhong Jiang Dat T.Tran +1 位作者 Jiangtian Li Deryn Chu 《Energy & Environmental Materials》 2019年第3期201-208,共8页
Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption ... Ru@RuO2 core-shell nanorods were successfully synthesized by heat-treating Ru nanorods with air oxidation through an accurate control of the temperature and time. The structure, composition, dimension, and adsorption property of the core-shell nanorods were well characterized with XRD and TEM. The catalytic activity and stability were electrochemically evaluated with a rotating disk electrode, a rotating ring-disk electrode, and chronopotentiometric methods. The Ru@RuO2 nanorods reveal excellent bifunctional catalytic activity and robust stability for both oxygen evolution reaction(OER) and hydrogen evolution reaction(HER). The overpotentials for OER and HER are 320 m V and 137 m V at the current density of10 m A cm-2, respectively. The catalytic activity of Ru@RuO2 nanorods for OER is 6.5 times higher than that of the state-of-the-art catalyst IrO2 according to the catalytic current density measured at 1.60 V(versus RHE).The catalytic activity of Ru@RuO2 nanorods for HER is comparable to 40%Pt/C by comparing the catalytic current densities at à0.2 V. 展开更多
关键词 bifunctional catalyst CORE-SHELL hydrogen evolution reaction oxygen evolution reaction Ru@Ruo2
在线阅读 下载PDF
THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE OXYGEN EVOLUTION REACTION
15
作者 Peng Li CHENG Jian Min ZHANG Qiu Zhi SHI Chang Chun YANG Department of Chemistry,Zhengzhou University,Zhengzhou,450052 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第9期821-824,共4页
A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH s... A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH solution at 343K and current density 100 mAcm^(-2). 展开更多
关键词 OEA IM CO OER THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE oxygen evolution REACTION NI
在线阅读 下载PDF
Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe_(2)O_(4)achieving efficient and stable water oxidation
16
作者 Jiangyu Tang Xiao Wang +5 位作者 Yunfa Wang Min Shi Peng Huo Jianxiang Wu Qiaoxia Li Qunjie Xu 《Chinese Journal of Catalysis》 2025年第5期164-175,共12页
The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically appl... The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts. 展开更多
关键词 Non-bonding oxygen Lattice oxygen oxidation mechanism oxygen evolution reaction NiFe_(2)O_(4) Spinel oxide
在线阅读 下载PDF
Interfacial Ru nanoclusters in tandem with single atoms on oxygen-vacancy regulated CeO_(2)for anion exchange membrane seawater-splitting
17
作者 Yue Wang Jing Li +8 位作者 Pengfei Yang Hongdong Li Guangrui Xu Yunmei Du Caixia Li Wei Jin Tianyi Ma Zexing Wu Lei Wang 《Journal of Energy Chemistry》 2025年第3期618-627,共10页
A hydrogen spillover-bridged water dissociation/hydrogen formation could concurrently promote Volmer/Tafel process and improve the efficiency of hydrogen evolution reaction(HER)under alkaline conditions.However,it is ... A hydrogen spillover-bridged water dissociation/hydrogen formation could concurrently promote Volmer/Tafel process and improve the efficiency of hydrogen evolution reaction(HER)under alkaline conditions.However,it is still challenging to promote occurrence of hydrogen spillover for the large interfacial transport barriers of H_(2)O and hydrogen on active sites.Herein,the strategy of energy barrier gradient to induce hydrogen spillover was proposed by constructing Ru nanoclusters coupled with single atom onto oxygen vacancy cerium dioxide(Ru/CeO_(2)-Ov-2).Density functional theory(DFT)calculations uncover that the adsorption/desorption of H2O occurs at the Ru clusters sites and then the dissociated H*spontaneously overflows from Ru clusters with high binding energy into the adjacent Ru single atom sites with low binding energy,which facilitate the hydrogen formation.Consequently,the synthesized Ru/CeO_(2)-Ov-2 exhibits a small overpotential of 41 mV at 10 mA cm^(-2)and good stability at 500 mA cm^(-2)for 100 h in alkaline seawater,which could be ascribed to the rapid hydrogen spillover and strong coupling interaction between Ru and CeO_(2)-O_(v).This work provides a novel insight that synthesizing cooperative sites with energy barrier gradient helps to promote hydrogen spillover and accelerate the Volmer/Tafel process of HER. 展开更多
关键词 ELECTROCATALYST CeO_(2) RU oxygen vacancy Hydrogen evolution reaction
在线阅读 下载PDF
Rational construction of S-scheme CdS quantum dots/In_(2)O_(3) hollow nanotubes heterojunction for enhanced photocatalytic H_(2)evolution
18
作者 Yong-Hui Wu Yu-Qing Yan +3 位作者 Yi-Xiang Deng Wei-Ya Huang Kai Yang Kang-Qiang Lu 《Chinese Journal of Catalysis》 2025年第3期333-340,共8页
The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS... The rapid recombination of photogenerated carriers poses a significant limitation on the use of CdS quantum dots(QDs)in photocatalysis.Herein,the construction of a novel S-scheme heterojunction between cubic-phase CdS QDs and hollow nanotube In_(2)O_(3)is successfully achieved using an electrostatic self-assembly method.Under visible light irradiation,all CdS-In_(2)O_(3)composites exhibit higher hydrogen evolution efficiency compared to pure CdS QDs.Notably,the photocatalytic H_(2)evolution rate of the optimal CdS-7%In_(2)O_(3)composite is determined to be 2258.59μmol g^(−1)h^(−1),approximately 12.3 times higher than that of pure CdS.The cyclic test indicates that the CdS-In_(2)O_(3)composite maintains considerable activity even after 5 cycles,indicating its excellent stability.In situ X-ray photoelectron spectroscopy and density functional theory calculations confirm that carrier migration in CdS-In_(2)O_(3)composites adheres to a typical S-scheme heterojunction mechanism.Additionally,a series of characterizations demonstrate that the formation of S-scheme heterojunctions between In_(2)O_(3)and CdS inhibits charge recombination and accelerates the separation and migration of photogenerated carriers in the CdS QDs,thus achieving enhanced photocatalytic performance.This work elucidates the pivotal role of S-scheme heterojunctions in photocatalytic H_(2)production and offers novel insights into the construction of effective composite photocatalysts. 展开更多
关键词 CdS In2O3 Quantum dot Photocatalytic H_(2)evolution S-scheme heterojunction
在线阅读 下载PDF
Z-scheme heterojunction Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects
19
作者 Pengkun Zhang Qinhan Wu +7 位作者 Haoyu Wang Dong-Hau Kuo Yujie Lai Dongfang Lu Jiqing Li Jinguo Lin Zhanhui Yuan Xiaoyun Chen 《Chinese Journal of Catalysis》 2025年第7期279-293,共15页
Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ ... Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions. 展开更多
关键词 Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2) Z-scheme heterojunction Heterovalent valence states oxygen vacancy Photocatalytic N_(2)fixation
在线阅读 下载PDF
Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 被引量:1
20
作者 李金兵 姜志全 +1 位作者 王坤 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期103-109,I0004,共8页
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),... Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4. 展开更多
关键词 Co3O4/8io2 catalyst CO oxidation Calcination temperature Surface oxygen vacancies
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部