期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Advances in platinum-based materials for electrocatalytic ammonia oxidation:Mechanisms and research progress
1
作者 Youpeng Wang Yuan Ji +5 位作者 Chengbo Li Zhaoyang Chen Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Chinese Chemical Letters》 2025年第9期269-279,共11页
As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.With... As an emergent energy carrier,ammonia benefits from a well-established industrial infrastructure for its transportation and production,positioning it as a promising candidate toward a carbon-free energy landscape.Within this context,the electrocatalytic ammonia oxidation reaction(AOR)is pivotal.Platinum(Pt),recognized as the most efficient AOR catalyst,has undergone extensive development over the years,yielding notable advancements across various domains,ranging from elucidating the reaction mechanism to exploring innovative materials.This review begins by elucidating the mechanism of ammonia oxidation,summarizing the evolution of the mechanism and the diverse intermediates identified through various detection methods.Subsequently,it outlines the research progress surrounding different Pt-based catalysts,followed by a discussion on standard protocols for electrochemical ammonia oxidation testing,which facilitates meaningful comparisons across studies and catalyzes the development of more efficient and potent catalysts.Moreover,the review addresses current challenges in ammonia oxidation and outlines potential future directions,providing a comprehensive outlook on the field. 展开更多
关键词 Ammonia energy Electrochemical ammonia oxidation reaction intermediate detection Pt-based catalyst Electrochemical protocols
原文传递
Oxidation Resistance of In Situ Reaction/Hot Pressing Synthesized Ti_(2)AlC-20%TiB_(2) Composite at 600-900℃in Air
2
作者 Wenting Wang Jingjun Xu +4 位作者 Jun Zuo Ke Ma Yang Li Guangqi He Meishuan Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期739-748,共10页
The oxidation behavior and kinetics of Ti_(2)AlC-20vol.%TiB_(2) composite at 600-900℃ in air were investigated.The results showed that the oxidation kinetics of the composite followed a logarithmic law within the giv... The oxidation behavior and kinetics of Ti_(2)AlC-20vol.%TiB_(2) composite at 600-900℃ in air were investigated.The results showed that the oxidation kinetics of the composite followed a logarithmic law within the given temperature range,which indicated that the composites had excellent oxidation resistance.The selective oxidation of Al in Ti_(2)AlC was greatly enhanced,which facilitated the formation of a continuous and dense protective layer of Al_(2)O_(3).Meanwhile,the existence of molten B_(2)O_(3) inhibited the outward diffusion of Ti and inward diffusion of oxygen,which prevented the growth of anatase TiO_(2) at 600℃ and rutile TiO_(2) at 700-900℃.Therefore,the incorporation of TiB_(2) completely inhibited the abnormally rapid oxidation of bulk Ti_(2)AlC at 600℃ and improved its oxidation resistance at 700-900℃. 展开更多
关键词 MAX phase Ti_(2)AlC-TiB_(2)composite Intermediate temperature oxidation Oxidation kinetics
原文传递
Preparation and Characterization of Component Materials for Intermediate Temperature Solid Oxide Fuel Cell by Glycine-Nitrate Process 被引量:5
3
作者 刘荣辉 杜青山 +4 位作者 马文会 王华 杨斌 戴永年 马学菊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期98-103,共6页
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char... La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility. 展开更多
关键词 intermediate temperature solid oxide fuel cell glycine-nitrate process properties of materials rare earths
在线阅读 下载PDF
Synthesis and characterization of Y and Dy co-doped ceria solid electrolytes for IT-SOFCs:a microwave sintering 被引量:1
4
作者 Ch.Madhusudan Venkataramana Kasarapu +2 位作者 Madhuri Chittimadula Y.Suresh Reddy C.Vishnuvardhan Reddy 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3329-3336,共8页
In this communication,the electrical conductivities and thermal expansion studies of microwave sintered co-doped ceria Ce_(0.8)Y_(0.2-x)Dy_(x)O_(2-δ)(x=0,0.05,0.10,0.15 and 0.20) solid electrolyte materials for inter... In this communication,the electrical conductivities and thermal expansion studies of microwave sintered co-doped ceria Ce_(0.8)Y_(0.2-x)Dy_(x)O_(2-δ)(x=0,0.05,0.10,0.15 and 0.20) solid electrolyte materials for intermediate temperature solid oxide fuel cells(IT-SOFCs)synthesized by sol-gel auto-combustion method were discussed.Microwave sintering at 1300℃ for 30 min was used for making dense powder compacts.The relative densities of all the samples are noticed above 95%.Raman spectrum was characterized by the presence of a very strong band near 460 cm^(-1),which along with X-ray diffraction(XRD) analysis ascertain the sample formation with a single-phase cubic fluorite structure.The lattice parameter values were calculated from XRD patterns.SEM images show nearly uniform grains with distinct grain boundaries.The thermal expansion coefficients(TECs) are found to vary linearly with temperature and were measured in the range from 14.15 to 13.20×10^(-6)℃^(-1).The investigation on total ionic conductivity(TIC) was executed with variation in dopant concentration and relative oxygen vacancies.The impedance analysis reveals that the sample Ce_(0.80)Y_(0.10)Dy_(0.10)O_(2-δ) displays the highest TIC,i.e.,7.5×10^(-3) S·cm^(-1) at 500℃ and minimum activation energy 0.90 eV compared to others.With the highest TIC and minimum activation energy,the Ce_(0.80)Y_(0.10)Dy_(0.10)O_(2-δ)might be the possible material as the solid electrolyte in intermediate temperature SOFCs. 展开更多
关键词 Microwave sintering Ionic conductivity Co-doped ceria Solid electrolyte Intermediate temperature solid oxide fuel cells
原文传递
Preparation and Characterization of Cathode Materials La_(0.7)Sr_(0.3-x)Ca_xCo_(0.9)Fe_(0.1)O_(3-δ) by Reverse Titration Co-Precipitation Method for ITSOFC 被引量:1
5
作者 高文元 胡志强 +5 位作者 李长敏 唐乃岭 孙福禄 唐旭 魏蔷薇 孙永平 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期358-363,共6页
The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitatio... The precursors of La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(LSCCF, x=0.05, 0.10, 0.15, 0.20) as the cathode materials for intermediate temperature solid oxide fuel cell (ITSOFC) were prepared by reverse titration co-precipitation method with metal-nitrates as starting materials and mixed alkali (NaOH and Na2CO3) as a precipitating agent. The formation process of LSCCF from the precursors was monitored by TG-DSC, and the crystal structure and particles morphology of the precursors which were calcined at 600, 800, 1000 ℃ for 3 h were characterized using XRD, SEM technologies. Compared with the solid state reaction of constituent oxides, when the pH value of the precipitating solution was in the range of 9.1~9.5, the LSCCF powders from the precursors caclined at 800 ℃ for 3 h had high purity, homogeneous and single perovskite phase. The electrical conductivity of the LSCCF samples sintered at 1200 ℃ for 3 h, which was measured as a function of temperatures from 100 to 800 ℃ by DC four-probe method in air, decreased with x from 0.05 to 0.20. The value of electrical conductivity was almost equal because of Ca2+, Sr2+ co-dopant resulting in the 'mix effect' while x=0.10 or 0.15. The electrical conductivity of all doped samples was higher than 100 S·cm-1 at intermediate temperatures from 500 to 800 ℃, and there was good compatibility between the LSCCF cathode and Ce0.8Sm0.2O2 electrolyte. 展开更多
关键词 intermediate temperature solid oxide fuel cell La_(0.7)Sr_(0.3-x)Ca_xCo(1-y)Fe_yO_(3-δ) reverse titration co-precipitation property rare earths
在线阅读 下载PDF
An efficient chlorination of aromatic compounds using a catalytic amount of iodobenzene 被引量:1
6
作者 Ting-Ting Li Cui Xu +1 位作者 Chang-Bin Xiang Jie Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2013年第6期535-538,共4页
An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylb... An efficient method was developed for chlorination of aromatic compounds with electron-donating groups using iodobenzene as the catalyst and m-chloroperbenzoic acid as the terminal oxidant in the presence of 4-methylbenzenesulfonic acid in THF at room temperature for 24 h,and a series of the monochlorinated compounds was obtained in good yields.In this protocol,the catalyst iodobenzene was first oxidized into the hypervalent iodine intermediate,which then treated with lithium chloride and finally reacted with aromatic compounds to form the chlorinated compounds. 展开更多
关键词 Hypervalent iodine intermediate Chlorination Catalytic oxidation Synthesis
原文传递
Development of nickel based cermet anode materials in solid oxide fuel cells–Now and future 被引量:9
7
作者 Yu Liu Zongping Shao +1 位作者 Toshiyuki Mori San Ping Jiang 《Materials Reports(Energy)》 2021年第1期101-126,共26页
High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to elect... High temperature solid oxide fuel cell(SOFC)is the most efficient and clean energy conversion technology to electrochemically convert the chemical energy of fuels such as hydrogen,natural gas and hydrocarbons to electricity,and also the most viable alternative to the traditional thermal power plants.However,the power output of a SOFC critically depends on the characteristics and performance of its key components:anode,electrolyte and cathode.Due to the highly reducing environment and strict requirements in electrical conductivity and catalytic activity,there are limited choices in the anode materials of SOFCs,particularly for operation in the intermediate temperature range of 500–800C.Among them,Ni-based cermets are the most common and popular anode materials of SOFCs.The objective of this paper is to review the development of Ni-based anode materials in SOFC from the viewpoints of materials microstructure,performance and industrial scalability associated with the fabrication and optimization processes.The latest advancement in nano-structure architecture,contaminant tolerance and interface optimization of Ni-based cermet anodes is presented.And at the end of this paper,we propose and appeal for the collaborative work of scientists from different disciplines that enable the inter-fusion research of fabrication,microanalysis and modelling,aiming at the challenges in the development of Ni-based cermet anodes for commercially viable intermediate temperature SOFC or IT-SOFC technologies. 展开更多
关键词 Ni-based cermet anode Intermediate temperature solid oxide fuel cell ACTIVITY Interface optimization Carbon deposition Sulfur poisoning Multidisciplinary collaborative work
在线阅读 下载PDF
Synthesis mechanism of heterovalent Sn_2O_3 nanosheets in oxidation annealing process
8
作者 赵俊华 谭瑞琴 +6 位作者 杨晔 许炜 李佳 沈文峰 吾国强 杨旭峰 宋伟杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期178-182,共5页
Heterovalent Sn2O3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn3O4 to Sn2O3was consi... Heterovalent Sn2O3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn3O4 to Sn2O3was considered.Two contrasting experiments showed that both oxygen and heating were not necessary conditions for the phase transition.Sn2O3 was formed under an argon protective atmosphere by annealing and could also be obtained at room temperature by exposing Sn3O4 in atmosphere or dispersing in ethanol. The synthesis mechanism was proposed and discussed. This fundamental research is important for the technological applications of intermediate tin oxide materials. 展开更多
关键词 intermediate tin oxides NANOSHEETS metastable phase synthesis mechanism
原文传递
Status and prospects of intermediate temperature solid oxide fuel cells
9
作者 Bangwu Liu Yue Zhang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期84-90,共7页
Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commerc... Compared with conventional electric power generation systems, the solid oxide fuel cell (SOFC) has many advantages because of its unique features. High temperature SOFC has been successfully developed to its commercial applications, but it still faces many problems which hamper large-scale commercial applications of SOFC. To reduce the cost of SOFC, intermediate temperature solid oxide fuel cell (IT-SOFC) is presently under rapid development. The status of IT-SOFC was reviewed with emphasis on discussion of their component materials. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 solid oxide fuel cell (SOFC) intermediate temperature solid oxide fuel cell (IT-SOFC) component materials commercial applications
在线阅读 下载PDF
Ln_2MO_4 cathode materials for solid oxide fuel cells 被引量:6
10
作者 ZHAO Hui, LI Qiang & SUN LiPing Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China 《Science China Chemistry》 SCIE EI CAS 2011年第6期898-910,共13页
One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) ... One of the major challenges to develop "intermediate temperature" solid oxide fuel cells is finding a novel cathode material, which can meet the following requirements: (1) high electronic conductivity; (2) chemical compatibility with the electrolyte; (3) a matched thermal expansion coefficient (TEC); (4) stability in a wide range of oxygen partial pressure; and (5) high catalytic activity for the oxygen reduction reaction (ORR). In this short review, a survey of these requirements for K2NiF4-type material with the formula Ln2MO4, Ln = La, Pr, Nd, Sm; M = Ni, Cu, Fe, Co, Mn, is presented. The composition-dependent TEC, electrical conductivity and oxygen transport property are considered. The Ln2MO4 materials exhibit improved chemical stability and compatibility with most of the traditional electrolytes. The complete fuel cells integrated with Ln2MO4 materials as cathodes show promising results. Furthermore, these materials are considered as cathodes of protonic ceramic fuel cell (PCFC), and/or anodes of high temperature steam electrolysis (HTSE). First results show excellent performances. The versatility of these Ln2MO4 materials is explained on the basis of structural features and the ability to accommodate oxygen non-stoichiometry. 展开更多
关键词 intermediate temperature solid oxide fuel cells (ITSOFCs) CATHODE K2NiF4-type structure oxygen non-stoichiometry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部