Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formati...Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.展开更多
A solar steam generator(SSG)is an effective method for solving water shortages and protecting the environment,but its evaporation rate remains limited.Herein,Ga@EOG/PVA aerogel-based SSG with excellent photothermal se...A solar steam generator(SSG)is an effective method for solving water shortages and protecting the environment,but its evaporation rate remains limited.Herein,Ga@EOG/PVA aerogel-based SSG with excellent photothermal seawater purification capabilities was prepared using liquid metal gallium(Ga),edge oxidized graphene(EOG),and polyvinyl alcohol(PVA).The‘‘nut-cake-like''structure formed by electrochemical oxidation of EOG encapsulated Ga nanoparticles enhances light absorption and heat conversion efficiency through multiple light scattering and surface plasmon resonance.Furthermore,the vertical pore structure of the aerogel mimics the xylem conduit in tree trunks,allowing rapid transmission of heat and water,thus increasing its evaporation capacity.Based on these attributes,the SSG demonstrated a light absorption rate of 98.2%and an evaporation rate of 5.13 kg.m^(-2).h^(-1)under one-sun illumination,surpassing previously reported values in the literature.Moreover,the SSG effectively treated heavy metal salts,organic dyes,wastewaters,and acidic or alkaline solutions.These findings highlight the potential effectiveness of the prepared aerogel for numerous of environmental remediation applications,especially in ensuring high water quality and safety for human consumption.展开更多
Oxidized cholesterol(OXC)is a harmful dietary substance.Although the consumption of OXC has been associated with colonic inflammation,related underlying mechanisms are still limited.We evaluated the influence of dieta...Oxidized cholesterol(OXC)is a harmful dietary substance.Although the consumption of OXC has been associated with colonic inflammation,related underlying mechanisms are still limited.We evaluated the influence of dietary OXC on gut health and ecology by applying the murine model.Results showed that the thickness of the mucus layer was significantly reduced in healthy mice treated with OXC.Short-term intake of OXC did not influence the expression of pro-inflammatory factors in healthy mice but it induced the decrease of Muc2 expression in the proximal colon,accompanied by an increase in the abundance of 2 mucusdegrading bacteria,namely Akkermansia muciniphila and Bacteroides acidifaciens.Consistently,oral exposure of OXC promoted mucus barrier erosion in dextran sulfate sodium(DSS)-induced colitis mice and facilitated bacteria infiltration in the colon.The adverse effect of OXC on mucus layer disappeared in antibiotics-treated healthy mice,suggesting that the damaging effect of OXC on the gut mucus layer was not direct and instead was mediated by causing microbiota dysbiosis.Finally,the impact of OXC on the mucus layer and colitis was partly alleviated by green tea catechins.These studies demonstrated that the OXC-induced mucus barrier damage was mainly induced by the dysregulation of gut microbiota at least in this mouse model.展开更多
The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxi...The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.展开更多
High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of subs...High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of substrate and active metal particles,enabling excellent catalytic properties and stability.Herein,the optimization strategy of delignification and 2,2,6,6-tetramethylpyperidine-1-oxyl(TEMPO)oxidization was developed to modify the porous structure and active groups of wood substrate,and Ru doped Co/CO_(2)P(Ru-Co/CO_(2)P)nanoparticles were encapsulated into the optimized wood carbon substrate(Ru-Co/CO_(2)P@TDCW)for the efficient pH-universal hydrogen evolution reaction(HER).The nanopore and carboxyl groups were produced by delignification and TEMPO oxidation,which accelerated the dispersion and deposition of Ru-Co/CO_(2)P nanoparticles.The RuCo alloy and RuCoP nanoparticles were produced with the doping of Ru,and more Ru-Co/CO_(2)P nanoparticles were anchored by the delignified and TEMPO oxidized wood carbon(TDCW).As anticipated,the Ru-Co/CO_(2)P@TDCW catalyst exhibited excellent pH-universal HER activity,and only 16.6,93,and 43 mV of overpotentials were required to deliver the current density of 50 mA cm^(-2)in alkaline,neutral,and acidic electrolytes,outperforming the noble Pt/C/TDCW catalyst significantly.In addition,Ru-Co/CO_(2)P@TDCW catalyst presented excellent stability for more than 600 h working at 100 mA cm^(-2)in alkaline solution(1.0 M KOH).Density function theory(DFT)results revealed that energy barriers for the dissociation of H_(2)O and the formation of H_(2)were decreased by the doping of Ru,and the conductivity and efficiency of electron migration were also enhanced.This work demonstrated a strategy to optimize the structure and properties of wood carbon substrate,providing a promising strategy to synthesize high-efficiency catalyst for H_(2)production.展开更多
This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two exp...This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.展开更多
The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different struct...The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different structures due to oxidation.Considering this,various materials with fascinating structures have been explored by oxidation strategies,which possess novel properties and great potential in various applications such as solar batteries,hydrogen evolution reaction(HER)catalysts,and field effect transistors(FET).In this review,we systematically summarize the atomic structures of TMD oxidized variants and the corresponding fabrication approaches.Utilizing various characterization methods,the chemical components of TMD oxidized variants are illustrated.Furthermore,we expound the promising applications of the oxidized variants.This review is expected to provide a new insight for preparing precise materials at the atomic level through corresponding oxidation strategies.展开更多
(±)-Mycosphatide A(1a/1b),a pair of highly oxidized enantiomeric polyketides featuring a unique5/5/6/5-fused tetracyclic ring system,were isolated from the mangrove endophytic fungus Mycosphaerella sp.SYSU-DZG01....(±)-Mycosphatide A(1a/1b),a pair of highly oxidized enantiomeric polyketides featuring a unique5/5/6/5-fused tetracyclic ring system,were isolated from the mangrove endophytic fungus Mycosphaerella sp.SYSU-DZG01.Their structures were established by extensive spectroscopic analyses,single crystal Xray diffraction,and experimental electronic circular dichroism(ECD)spectra comparison.The plausible biosynthetic pathway of 1 was proposed,which involved the generation of a key spiro[4.5]decane scaffold.Compounds(+)-1a and(-)-1b exhibited significant lipid-lowering activity in 3T3-L1 adipocytes model,with EC50values of 7.85±1.56 and 8.87±0.80μmol/L,respectively.展开更多
Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate o...Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.展开更多
Three highly oxidized hybrid flavonoids neosophoflavonoids A–C(1,2a,and 2b)were isolated from the roots of Sophora flavescens.Neosophoflavonoid A possesses a unique highly oxidized heptacyclic6/6/6/6/6/6/5 system.Neo...Three highly oxidized hybrid flavonoids neosophoflavonoids A–C(1,2a,and 2b)were isolated from the roots of Sophora flavescens.Neosophoflavonoid A possesses a unique highly oxidized heptacyclic6/6/6/6/6/6/5 system.Neosophoflavonoids B and C are isomers and share the same highly oxidized hexacyclic 6/6/6/6/6/6 systems.Their planar structures were elucidated from 1D/2D nuclear magnetic resonance(NMR),ultraviolet spectroscopy(UV),infrared spectroscopy(IR),and high resolution electrospray ionization mass spectroscopy(HRESIMS)data.Their absolute configurations were determined by thorough GIAO13C NMR(DP4+)calculation protocol and electronic circular dichroism(ECD)calculation method.The plausible biosynthetic routes for the compounds were also proposed.All compounds exhibited significant protein tyrosine phosphatase-1B(PTP1B)inhibitory activity with half maximal inhibitory concentration(IC_(5)0)values 3.94±0.01,0.38±0.13,and 0.70±0.01μmol/L,respectively.In addition,compared to a positive control fenofibrate(Feno)at 20μmol/L,compounds 2a and 2b exhibited stronger inhibitory effects on lipid accumulation in the oleic acid(OA)-induced cell model at 5 and 10μmol/L.展开更多
The steel belt roasting process has the advantages of low cost,small footprint,and high thermal efficiency,making it widely used in the smelting of ferroalloys such as ferrochrome,ferromanganese,and ferroniobium.Howev...The steel belt roasting process has the advantages of low cost,small footprint,and high thermal efficiency,making it widely used in the smelting of ferroalloys such as ferrochrome,ferromanganese,and ferroniobium.However,its application in preparing iron ore oxidized pellets has not been sufficiently explored.The optimal thermal process conditions for magnesium-containing oxidized pellet preparation by steel belt roasting machine were investigated based on the roasting properties of high-magnesium iron concentrate and typical iron concentrate.The results indicate that,for the blending scheme of 70 wt.%high-magnesium iron concentrate and 30 wt.%typical iron concentrate,the appropriate preheating temperature for pellets is 950–975℃and the suitable roasting temperature is 1250–1275℃,during which the compressive strength of pellets can exceed 2500 N pellet−1.During the steel belt roasting process,SO_(2)is primarily released in the preheating zone,and the maximum exhaust gas temperature in the roasting zone can reach 637℃.High-temperature sulfur-containing exhaust gas causes oxidation corrosion,sulfide corrosion,and deformation of the steel belt.To enhance the steel belt longevity,it is recommended to appropriately reduce the wind velocity in the preheating zone and roasting zone,while also decreasing the ratio of pellet bed height to hearth layer height.By adopting the system of“low wind velocity,thin pellet bed,fast steel belt speed,”the exhaust gas temperature can be reduced to 463℃.The prepared pellet maintains a compressive strength of 2607 N pellet^(-1)and exhibits excellent metallurgical properties.展开更多
Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellu...Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellulose by chemical oxidation can expand its application field.The oxidation process of cellulose is focused on,the oxidation methods and research progress of cellulose are introduced,and further development direction of oxidized cellulose is prospected.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des...The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.展开更多
TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups...TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.展开更多
A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately...A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.展开更多
Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Me...Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the p H of 4.1.Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups(P = 0.373; P = 0.538; and P = 0.615, respectively, independent ttest). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients(P = 0.000, Mann Whitney U test).Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated malaria. Although plasma concentration of albumin in both groups is below the normal range,there is an increase in complicated malaria that might be as compensation of oxidative stress.展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, a...OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ±0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.展开更多
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t...Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2023YFC3706203)the National Natural Science Foundation of China (Grant Nos. 91644214, 22361162668, and 22406109)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2024M751797)Shandong Postdoctoral Science Foundation (SDCX-ZG-202400178)
文摘Enhanced mass concentrations of aromatic-derived secondary organic aerosol(SOA)are frequently observed during humid-haze events.However,the influencing mechanism of relative humidity(RH)in aromatic-derived SOA formation remains incompletely understood.Here,the RH dependence of SOA formation in the presence of NOx was explored by a series of chamber experiments for toluene(TOL)and 1,3,5-trimethylbenzene(TMB)photooxidation.The yield of TOL SOA and TMB SOA increased by 221%and 52%with increasing RH from~8%to~70%,respectively.Analytical results from a high-resolution mass spectrometer showed that SOA constituents with high oxygen content(O/C>0.6)were more abundant in SOA formed in the~70%RH experiment.The elevated yields and O/C of SOA could be attributed to the promoted formation and particle-phase diffusivity of highly oxidized molecules.In addition,in comparison with TMB,TOL could produce more unsaturated aldehydes,which are oxidized into carboxylic acids with high O/C,leading to a more sensitive response of TOL SOA formation to the change in RH.Our work provides mechanistic insights into RH roles in aromatic SOA formation and is helpful for a better understanding of humid-haze events.
基金financially supported by the National Natural Science Foundation of China(No.52403116)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(No.sklpme2024-1-27)+2 种基金Sichuan Science and Technology Program(No.MZGC20240046)the Science Foundation of Sichuan Province(No.2023NSFSC0978)the Natural Science Starting Project of SWPU(No.2023QHZ018)。
文摘A solar steam generator(SSG)is an effective method for solving water shortages and protecting the environment,but its evaporation rate remains limited.Herein,Ga@EOG/PVA aerogel-based SSG with excellent photothermal seawater purification capabilities was prepared using liquid metal gallium(Ga),edge oxidized graphene(EOG),and polyvinyl alcohol(PVA).The‘‘nut-cake-like''structure formed by electrochemical oxidation of EOG encapsulated Ga nanoparticles enhances light absorption and heat conversion efficiency through multiple light scattering and surface plasmon resonance.Furthermore,the vertical pore structure of the aerogel mimics the xylem conduit in tree trunks,allowing rapid transmission of heat and water,thus increasing its evaporation capacity.Based on these attributes,the SSG demonstrated a light absorption rate of 98.2%and an evaporation rate of 5.13 kg.m^(-2).h^(-1)under one-sun illumination,surpassing previously reported values in the literature.Moreover,the SSG effectively treated heavy metal salts,organic dyes,wastewaters,and acidic or alkaline solutions.These findings highlight the potential effectiveness of the prepared aerogel for numerous of environmental remediation applications,especially in ensuring high water quality and safety for human consumption.
基金supported by Hong Kong Research Grants Council General Research Fund(CUHK 14102321,14103722 and 14104923)。
文摘Oxidized cholesterol(OXC)is a harmful dietary substance.Although the consumption of OXC has been associated with colonic inflammation,related underlying mechanisms are still limited.We evaluated the influence of dietary OXC on gut health and ecology by applying the murine model.Results showed that the thickness of the mucus layer was significantly reduced in healthy mice treated with OXC.Short-term intake of OXC did not influence the expression of pro-inflammatory factors in healthy mice but it induced the decrease of Muc2 expression in the proximal colon,accompanied by an increase in the abundance of 2 mucusdegrading bacteria,namely Akkermansia muciniphila and Bacteroides acidifaciens.Consistently,oral exposure of OXC promoted mucus barrier erosion in dextran sulfate sodium(DSS)-induced colitis mice and facilitated bacteria infiltration in the colon.The adverse effect of OXC on mucus layer disappeared in antibiotics-treated healthy mice,suggesting that the damaging effect of OXC on the gut mucus layer was not direct and instead was mediated by causing microbiota dysbiosis.Finally,the impact of OXC on the mucus layer and colitis was partly alleviated by green tea catechins.These studies demonstrated that the OXC-induced mucus barrier damage was mainly induced by the dysregulation of gut microbiota at least in this mouse model.
基金supported by the National Natural Science Foundation of China(Nos.51977027 and 51967008)the Scientific and Technological Project of Yunnan Precious Metals Lab-oratory(Nos.YPML-2023050250 and YPML-2022050206).
文摘The pursuit of Ag-based alloys with both high strength and toughness has posed a longstanding chal-lenge.In this study,we investigated the cluster strengthening and grain refinement toughening mecha-nisms in fully oxidized AgMgNi alloys,which were internally oxidized at 800℃ for 8 h under an oxy-gen atmosphere.We found that Mg-O clusters contributed to the hardening(138 HV)and strengthening(376.9 MPa)of the AgMg alloy through solid solution strengthening effects,albeit at the expense of duc-tility.To address this limitation,we introduced Ni nanoparticles into the AgMg alloy,resulting in signifi-cant grain refinement within its microstructure.Specifically,the grain size decreased from 67.2μm in the oxidized AgMg alloy to below 6.0μm in the oxidized AgMgNi alloy containing 0.3 wt%Ni.Consequently,the toughness increased significantly,rising from toughness value of 2177.9 MJ m^(-3) in the oxidized AgMg alloy to 6186.1 MJ m^(-3) in the oxidized AgMgNi alloy,representing a remarkable 2.8-fold enhancement.Furthermore,the internally oxidized AgMgNi alloy attained a strength of up to 387.6 MPa,comparable to that of the internally oxidized AgMg alloy,thereby demonstrating the successful realization of concurrent strengthening and toughening.These results collectively offer a novel approach for the design of high-performance alloys through the synergistic combination of cluster strengthening and grain refinement toughening.
基金financially supported by the National Natural Science Foundation of China(32101452)the Research Foundation of Education Bureau of Hunan Province(22B0283)+2 种基金the Hunan Provincial Natural Science Foundation(2022JJ40865)the Talents Research Funding of Central South University of Forestry and Technology(2021YJ007)the Scientific Innovation Fund for Graduate of Central South University of Forestry and Technology(2024CX02005)。
文摘High-performance catalyst is significant for the sustainable hydrogen(H_(2))production by electrocatalytic water splitting.Optimizing porous structure and active groups of substrate can promote the interaction of substrate and active metal particles,enabling excellent catalytic properties and stability.Herein,the optimization strategy of delignification and 2,2,6,6-tetramethylpyperidine-1-oxyl(TEMPO)oxidization was developed to modify the porous structure and active groups of wood substrate,and Ru doped Co/CO_(2)P(Ru-Co/CO_(2)P)nanoparticles were encapsulated into the optimized wood carbon substrate(Ru-Co/CO_(2)P@TDCW)for the efficient pH-universal hydrogen evolution reaction(HER).The nanopore and carboxyl groups were produced by delignification and TEMPO oxidation,which accelerated the dispersion and deposition of Ru-Co/CO_(2)P nanoparticles.The RuCo alloy and RuCoP nanoparticles were produced with the doping of Ru,and more Ru-Co/CO_(2)P nanoparticles were anchored by the delignified and TEMPO oxidized wood carbon(TDCW).As anticipated,the Ru-Co/CO_(2)P@TDCW catalyst exhibited excellent pH-universal HER activity,and only 16.6,93,and 43 mV of overpotentials were required to deliver the current density of 50 mA cm^(-2)in alkaline,neutral,and acidic electrolytes,outperforming the noble Pt/C/TDCW catalyst significantly.In addition,Ru-Co/CO_(2)P@TDCW catalyst presented excellent stability for more than 600 h working at 100 mA cm^(-2)in alkaline solution(1.0 M KOH).Density function theory(DFT)results revealed that energy barriers for the dissociation of H_(2)O and the formation of H_(2)were decreased by the doping of Ru,and the conductivity and efficiency of electron migration were also enhanced.This work demonstrated a strategy to optimize the structure and properties of wood carbon substrate,providing a promising strategy to synthesize high-efficiency catalyst for H_(2)production.
基金support from the National Natural Science Foundation of China (No. U1960202)the Opening Foundation from Shanghai Engineering Research Center of Hot Manufacturing, China (No. 18DZ2253400)。
文摘This work focuses on the influence of Al content on the precipitation of nanoprecipitates,growth of prior austenite grains(PAGs),and impact toughness in simulated coarse-grained heat-affected zones (CGHAZs) of two experimental shipbuilding steels after being subjected to high-heat input welding at 400 kJ·cm^(-1).The base metals (BMs) of both steels contained three types of precipitates Type Ⅰ:cubic (Ti,Nb)(C,N),Type Ⅱ:precipitate with cubic (Ti,Nb)(C,N) core and Nb-rich cap,and Type Ⅲ:ellipsoidal Nb-rich precipitate.In the BM of 60Al and 160Al steels,the number densities of the precipitates were 11.37×10^(5) and 13.88×10^(5) mm^(-2),respectively The 60Al and 160Al steel contained 38.12% and 6.39% Type Ⅲ precipitates,respectively.The difference in the content of Type Ⅲ precipitates in the 60Al steel reduced the pinning effect at the elevated temperature of the CGHAZ,which facilitated the growth of PAGs The average PAG sizes in the CGHAZ of the 60Al and 160Al steels were 189.73 and 174.7μm,respectively.In the 60Al steel,the low lattice mismatch among Cu_(2)S,TiN,and γ-Al_(2)O_(3)facilitated the precipitation of Cu_(2)S and TiN onto γ-Al_(2)O_(3)during welding,which decreased the number density of independently precipitated (Ti,Nb)(C,N) particles but increased that of γ-Al_(2)O_(3)–Ti N–Cu_(2)S particles.Thus abnormally large PAGs formed in the CGHAZ of the 60Al steel,and they reached a maximum size of 1 mm.These PAGs greatly reduced the microstructural homogeneity and consequently decreased the impact toughness from 134 (0.016wt%Al) to 54 J (0.006wt%Al)at-40℃.
基金financially supported by the National Natural Science of China(No.51902101)Natural Science of Jiangsu Province(No.BK20201381)Science of Nanjing University of Posts and Telecommunications(No.NY219144)。
文摘The physicochemical properties of transition metal dichalcogenides(TMDs)are highly related to their structures and usually stable in air.However,under certain conditions they could be transformed into different structures due to oxidation.Considering this,various materials with fascinating structures have been explored by oxidation strategies,which possess novel properties and great potential in various applications such as solar batteries,hydrogen evolution reaction(HER)catalysts,and field effect transistors(FET).In this review,we systematically summarize the atomic structures of TMD oxidized variants and the corresponding fabrication approaches.Utilizing various characterization methods,the chemical components of TMD oxidized variants are illustrated.Furthermore,we expound the promising applications of the oxidized variants.This review is expected to provide a new insight for preparing precise materials at the atomic level through corresponding oxidation strategies.
基金National Natural Science Foundation of China(Nos.U20A2001,81973195,21877133)the Guangdong Marine Economy Development Special Project(Nos.GDNRC[2022]35,GDNRC[2023]39)。
文摘(±)-Mycosphatide A(1a/1b),a pair of highly oxidized enantiomeric polyketides featuring a unique5/5/6/5-fused tetracyclic ring system,were isolated from the mangrove endophytic fungus Mycosphaerella sp.SYSU-DZG01.Their structures were established by extensive spectroscopic analyses,single crystal Xray diffraction,and experimental electronic circular dichroism(ECD)spectra comparison.The plausible biosynthetic pathway of 1 was proposed,which involved the generation of a key spiro[4.5]decane scaffold.Compounds(+)-1a and(-)-1b exhibited significant lipid-lowering activity in 3T3-L1 adipocytes model,with EC50values of 7.85±1.56 and 8.87±0.80μmol/L,respectively.
文摘Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.
基金supported by the National Natural Science Foundation of China(No.81973194)Biomedical High Performance Computing Platform,Chinese Academy of Medical Sciences。
文摘Three highly oxidized hybrid flavonoids neosophoflavonoids A–C(1,2a,and 2b)were isolated from the roots of Sophora flavescens.Neosophoflavonoid A possesses a unique highly oxidized heptacyclic6/6/6/6/6/6/5 system.Neosophoflavonoids B and C are isomers and share the same highly oxidized hexacyclic 6/6/6/6/6/6 systems.Their planar structures were elucidated from 1D/2D nuclear magnetic resonance(NMR),ultraviolet spectroscopy(UV),infrared spectroscopy(IR),and high resolution electrospray ionization mass spectroscopy(HRESIMS)data.Their absolute configurations were determined by thorough GIAO13C NMR(DP4+)calculation protocol and electronic circular dichroism(ECD)calculation method.The plausible biosynthetic routes for the compounds were also proposed.All compounds exhibited significant protein tyrosine phosphatase-1B(PTP1B)inhibitory activity with half maximal inhibitory concentration(IC_(5)0)values 3.94±0.01,0.38±0.13,and 0.70±0.01μmol/L,respectively.In addition,compared to a positive control fenofibrate(Feno)at 20μmol/L,compounds 2a and 2b exhibited stronger inhibitory effects on lipid accumulation in the oleic acid(OA)-induced cell model at 5 and 10μmol/L.
基金The research was financially supported by the National Key Research and Development Program of China(No.2023YFC3707002)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220069)Postgraduate Innovative Project of Central South University(No.1053320214756).
文摘The steel belt roasting process has the advantages of low cost,small footprint,and high thermal efficiency,making it widely used in the smelting of ferroalloys such as ferrochrome,ferromanganese,and ferroniobium.However,its application in preparing iron ore oxidized pellets has not been sufficiently explored.The optimal thermal process conditions for magnesium-containing oxidized pellet preparation by steel belt roasting machine were investigated based on the roasting properties of high-magnesium iron concentrate and typical iron concentrate.The results indicate that,for the blending scheme of 70 wt.%high-magnesium iron concentrate and 30 wt.%typical iron concentrate,the appropriate preheating temperature for pellets is 950–975℃and the suitable roasting temperature is 1250–1275℃,during which the compressive strength of pellets can exceed 2500 N pellet−1.During the steel belt roasting process,SO_(2)is primarily released in the preheating zone,and the maximum exhaust gas temperature in the roasting zone can reach 637℃.High-temperature sulfur-containing exhaust gas causes oxidation corrosion,sulfide corrosion,and deformation of the steel belt.To enhance the steel belt longevity,it is recommended to appropriately reduce the wind velocity in the preheating zone and roasting zone,while also decreasing the ratio of pellet bed height to hearth layer height.By adopting the system of“low wind velocity,thin pellet bed,fast steel belt speed,”the exhaust gas temperature can be reduced to 463℃.The prepared pellet maintains a compressive strength of 2607 N pellet^(-1)and exhibits excellent metallurgical properties.
文摘Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellulose by chemical oxidation can expand its application field.The oxidation process of cellulose is focused on,the oxidation methods and research progress of cellulose are introduced,and further development direction of oxidized cellulose is prospected.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
基金financially supported by the National Natural Science Foundation of China(51503178,52202048,52027801)National Key R&D Program of China(2017YFA0206301)+1 种基金China-Germany Collaboration Project(M-0199)Natural Science Foundation of Hebei Province(B2021203012,E2022203082)。
文摘The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
文摘TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.
文摘A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.
基金Supported by The Ministry of Research & Technology Republic of Indonesia with grant No.499/J10.2/PL/2009
文摘Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the p H of 4.1.Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups(P = 0.373; P = 0.538; and P = 0.615, respectively, independent ttest). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients(P = 0.000, Mann Whitney U test).Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated malaria. Although plasma concentration of albumin in both groups is below the normal range,there is an increase in complicated malaria that might be as compensation of oxidative stress.
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
文摘OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ±0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.
基金Project(2008BAB32B06) supported by the Key Projects in the National Science and Technology Pillar Program during the 11th Five-year Plan PeriodProject(2009ybfz20) supported by the Program for Excellent Doctor’s Degree Paper in Central South University,ChinaProject(1343/74333001114) supported by the Postgraduate’s Paper Innovation Fund of Hunan Province,China
文摘Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.