期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge 被引量:25
1
作者 Jianhua Li Min Zhang +1 位作者 Zhiyin Ye Changming Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第2期267-277,共11页
Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion(AD) of sewage sludge. In this study, the effect of added manganese oxidemodified biochar composite(MBC) on methane produc... Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion(AD) of sewage sludge. In this study, the effect of added manganese oxidemodified biochar composite(MBC) on methane production and heavy metal fractionation during sewage sludge AD was examined. The MBC could increase the buffering capacity,enhance the methane production and degradation of intermediate acids, buffer the pH of the culture, and stabilize the sewage sludge AD process. The application of MBC positively impacted methane production and the cumulative methane yield increased up to 121.97%,as compared with the control. The MBC addition can improve metal stabilization in the digestate. An optimum MBC dose of 2.36 g was recommended, which would produce up to 121.1 L/kg volatile solids of methane. After the AD process, even though most of the metals accumulated in the residual solids, they could be transformation from the bio-available fractions to a more stable fraction. The total organic-and sulfide-bound and residual fraction content at a 3 g dose of MBC that is 0.12 g/g dry matter were 51.06% and 35.11% higher than the control, respectively. The results indicated that the application of MBC could improve the performance of AD and promote stabilization of heavy metals in sewage sludge post the AD process. 展开更多
关键词 SEWAGE sludge Anaerobic digestion Manganese oxide-modified BIOCHAR (MBC) Methane production Heavy metals Chemical species
原文传递
Characterization of Metal Oxide-modified Walnut-shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies 被引量:7
2
作者 余琼粉 LI Ming +2 位作者 NING Ping 易红宏 TANG Xiaolong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期487-495,共9页
We prepared a kind of metal oxide-modified walnut-shell activated carbon(MWAC) by KOH chemical activation method and used for PH_3 adsorption removal. Meanwhile, the PH_3 adsorption equilibrium was investigated experi... We prepared a kind of metal oxide-modified walnut-shell activated carbon(MWAC) by KOH chemical activation method and used for PH_3 adsorption removal. Meanwhile, the PH_3 adsorption equilibrium was investigated experimentally and fitted by the Toth equation, and the isosteric heat of PH_3 adsorption was calculated by the Clausius-Clapeyron Equation. The exhausted MWAC was regenerated by water washing and air drying. Moreover, the properties of five different samples were characterized by N_2 adsorption isotherm, SEM/EDS, XPS, and FTIR. The results showed that the maximum PH_3 equilibrium adsorption capacity was 595.56 mg/g. The MWAC had an energetically heterogeneous surface due to values of isosteric heat of adsorption ranging from 43 to 90 kJ/mol. The regeneration method provided an effective way for both adsorption species recycling and exhausted carbon regeneration. The high removal efficiency and big equilibrium adsorption capacity for PH_3 adsorption on the MWAC were related to its large surface area and high oxidation activity in PH_3 adsorption-oxidation to H_3 PO_4 and P_2 O_5. Furthermore, a possible PH_3 adsorption mechanism was proposed. 展开更多
关键词 PHOSPHINE metal oxide-modified walnut-shell activated carbon ADSORPTION EQUILIBRIUM REGENERATION mechanism
原文传递
Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO_(2) 被引量:1
3
作者 Xu Zhao Naitao Gao +2 位作者 Shengcheng Wu Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期786-794,共9页
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d... CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs. 展开更多
关键词 polyethylene oxide-modified TiO_(2) film low-temperature process CsPbI_(2)Br-based all-inorganic perovskite solar cells photo-voltaic performance
在线阅读 下载PDF
Removal of Cd^(2+) from aqueous solution using graphene oxide modified activate carbon derived from peanut shell
4
作者 Yilu Du Hui Wang +4 位作者 Jiangtao Ji Xin Jin Yang Song Hao Zhang Zhi Chen 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第5期226-235,共10页
Graphene oxide(GO)was prepared by a modified Hummers method using peanut shells and natural graphite,and graphene oxide modified peanut shells activated carbon composites(GO-AC)were synthesized by co-pyrolysis.The opt... Graphene oxide(GO)was prepared by a modified Hummers method using peanut shells and natural graphite,and graphene oxide modified peanut shells activated carbon composites(GO-AC)were synthesized by co-pyrolysis.The optimal preparation conditions of AC were screened by response surface methodology(RSM)to optimize the preparation process.The results showed that the surface of GO-AC had more micropores and larger specific surface area,increased the surface adsorption sites and had more oxygen-containing functional groups.The adsorption process was mainly based on chemisorption,and the adsorption capacity was 3.45 and 1.30 times higher than that of BC(45.16 mg/g)and AC(119.21 mg/g),respectively.After six adsorption-desorption cycle tests,the adsorption amount of Cd^(2+)by GO-AC was still as high as 89.26 mg/g,with a percentage increase of 93.5%and 365%compared to BC(19.18 mg/g)and AC(46.13 mg/g),respectively,with good reusability.The research can provide a useful reference for the high value-added conversion of waste biomass,and GO-AC loading modified with significant adsorption of Cd2+has good potential for application as a novel and low-cost adsorbent. 展开更多
关键词 graphene oxide-modified biochar response surface optimization adsorption heavy metal
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部