Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion(AD) of sewage sludge. In this study, the effect of added manganese oxidemodified biochar composite(MBC) on methane produc...Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion(AD) of sewage sludge. In this study, the effect of added manganese oxidemodified biochar composite(MBC) on methane production and heavy metal fractionation during sewage sludge AD was examined. The MBC could increase the buffering capacity,enhance the methane production and degradation of intermediate acids, buffer the pH of the culture, and stabilize the sewage sludge AD process. The application of MBC positively impacted methane production and the cumulative methane yield increased up to 121.97%,as compared with the control. The MBC addition can improve metal stabilization in the digestate. An optimum MBC dose of 2.36 g was recommended, which would produce up to 121.1 L/kg volatile solids of methane. After the AD process, even though most of the metals accumulated in the residual solids, they could be transformation from the bio-available fractions to a more stable fraction. The total organic-and sulfide-bound and residual fraction content at a 3 g dose of MBC that is 0.12 g/g dry matter were 51.06% and 35.11% higher than the control, respectively. The results indicated that the application of MBC could improve the performance of AD and promote stabilization of heavy metals in sewage sludge post the AD process.展开更多
We prepared a kind of metal oxide-modified walnut-shell activated carbon(MWAC) by KOH chemical activation method and used for PH_3 adsorption removal. Meanwhile, the PH_3 adsorption equilibrium was investigated experi...We prepared a kind of metal oxide-modified walnut-shell activated carbon(MWAC) by KOH chemical activation method and used for PH_3 adsorption removal. Meanwhile, the PH_3 adsorption equilibrium was investigated experimentally and fitted by the Toth equation, and the isosteric heat of PH_3 adsorption was calculated by the Clausius-Clapeyron Equation. The exhausted MWAC was regenerated by water washing and air drying. Moreover, the properties of five different samples were characterized by N_2 adsorption isotherm, SEM/EDS, XPS, and FTIR. The results showed that the maximum PH_3 equilibrium adsorption capacity was 595.56 mg/g. The MWAC had an energetically heterogeneous surface due to values of isosteric heat of adsorption ranging from 43 to 90 kJ/mol. The regeneration method provided an effective way for both adsorption species recycling and exhausted carbon regeneration. The high removal efficiency and big equilibrium adsorption capacity for PH_3 adsorption on the MWAC were related to its large surface area and high oxidation activity in PH_3 adsorption-oxidation to H_3 PO_4 and P_2 O_5. Furthermore, a possible PH_3 adsorption mechanism was proposed.展开更多
CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state d...CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.展开更多
Graphene oxide(GO)was prepared by a modified Hummers method using peanut shells and natural graphite,and graphene oxide modified peanut shells activated carbon composites(GO-AC)were synthesized by co-pyrolysis.The opt...Graphene oxide(GO)was prepared by a modified Hummers method using peanut shells and natural graphite,and graphene oxide modified peanut shells activated carbon composites(GO-AC)were synthesized by co-pyrolysis.The optimal preparation conditions of AC were screened by response surface methodology(RSM)to optimize the preparation process.The results showed that the surface of GO-AC had more micropores and larger specific surface area,increased the surface adsorption sites and had more oxygen-containing functional groups.The adsorption process was mainly based on chemisorption,and the adsorption capacity was 3.45 and 1.30 times higher than that of BC(45.16 mg/g)and AC(119.21 mg/g),respectively.After six adsorption-desorption cycle tests,the adsorption amount of Cd^(2+)by GO-AC was still as high as 89.26 mg/g,with a percentage increase of 93.5%and 365%compared to BC(19.18 mg/g)and AC(46.13 mg/g),respectively,with good reusability.The research can provide a useful reference for the high value-added conversion of waste biomass,and GO-AC loading modified with significant adsorption of Cd2+has good potential for application as a novel and low-cost adsorbent.展开更多
基金supported by the Foundation of National Special Item on Water Resource and Environment (No.2014ZX07303003 and 2017ZX07603003)
文摘Low organic matter content and high heavy metal levels severely inhibit the anaerobic digestion(AD) of sewage sludge. In this study, the effect of added manganese oxidemodified biochar composite(MBC) on methane production and heavy metal fractionation during sewage sludge AD was examined. The MBC could increase the buffering capacity,enhance the methane production and degradation of intermediate acids, buffer the pH of the culture, and stabilize the sewage sludge AD process. The application of MBC positively impacted methane production and the cumulative methane yield increased up to 121.97%,as compared with the control. The MBC addition can improve metal stabilization in the digestate. An optimum MBC dose of 2.36 g was recommended, which would produce up to 121.1 L/kg volatile solids of methane. After the AD process, even though most of the metals accumulated in the residual solids, they could be transformation from the bio-available fractions to a more stable fraction. The total organic-and sulfide-bound and residual fraction content at a 3 g dose of MBC that is 0.12 g/g dry matter were 51.06% and 35.11% higher than the control, respectively. The results indicated that the application of MBC could improve the performance of AD and promote stabilization of heavy metals in sewage sludge post the AD process.
基金Funded by the National Natural Science Foundation of China(51566017)
文摘We prepared a kind of metal oxide-modified walnut-shell activated carbon(MWAC) by KOH chemical activation method and used for PH_3 adsorption removal. Meanwhile, the PH_3 adsorption equilibrium was investigated experimentally and fitted by the Toth equation, and the isosteric heat of PH_3 adsorption was calculated by the Clausius-Clapeyron Equation. The exhausted MWAC was regenerated by water washing and air drying. Moreover, the properties of five different samples were characterized by N_2 adsorption isotherm, SEM/EDS, XPS, and FTIR. The results showed that the maximum PH_3 equilibrium adsorption capacity was 595.56 mg/g. The MWAC had an energetically heterogeneous surface due to values of isosteric heat of adsorption ranging from 43 to 90 kJ/mol. The regeneration method provided an effective way for both adsorption species recycling and exhausted carbon regeneration. The high removal efficiency and big equilibrium adsorption capacity for PH_3 adsorption on the MWAC were related to its large surface area and high oxidation activity in PH_3 adsorption-oxidation to H_3 PO_4 and P_2 O_5. Furthermore, a possible PH_3 adsorption mechanism was proposed.
基金financially supported by the Guangzhou Basic and Applied Basic Research Foundation,China(No.303523)。
文摘CsPbX_(3)-based(X=I,Br,Cl)inorganic perovskite solar cells(PSCs)prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability.However,the high trap state density and serious charge recombination between low-temperature processed TiO_(2)film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs.Here a thin polyethylene oxide(PEO)layer is employed to modify TiO_(2)film to passivate traps and promote carrier collection.The impacts of PEO layer on microstructure and photoelectric characteristics of TiO_(2)film and related devices are systematically studied.Characterization results suggest that PEO modification can reduce the surface roughness of TiO_(2)film,decrease its average surface potential,and passivate trap states.At optimal conditions,the champion efficiency of CsPbI_(2)Br PSCs with PEO-modified TiO_(2)(PEO-PSCs)has been improved to 11.24%from 9.03%of reference PSCs.Moreover,the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
基金supported by the National Natural Science Foundation of China(41201224)Postgraduate Education Reform Project of Henan Province(2021SJGLX138Y)+1 种基金Henan Province Science and Technology Research Project(192102110050)Project for the Training of Young Backbone Teachers of Higher Education Institutions in Henan Province(2018GGJS047).
文摘Graphene oxide(GO)was prepared by a modified Hummers method using peanut shells and natural graphite,and graphene oxide modified peanut shells activated carbon composites(GO-AC)were synthesized by co-pyrolysis.The optimal preparation conditions of AC were screened by response surface methodology(RSM)to optimize the preparation process.The results showed that the surface of GO-AC had more micropores and larger specific surface area,increased the surface adsorption sites and had more oxygen-containing functional groups.The adsorption process was mainly based on chemisorption,and the adsorption capacity was 3.45 and 1.30 times higher than that of BC(45.16 mg/g)and AC(119.21 mg/g),respectively.After six adsorption-desorption cycle tests,the adsorption amount of Cd^(2+)by GO-AC was still as high as 89.26 mg/g,with a percentage increase of 93.5%and 365%compared to BC(19.18 mg/g)and AC(46.13 mg/g),respectively,with good reusability.The research can provide a useful reference for the high value-added conversion of waste biomass,and GO-AC loading modified with significant adsorption of Cd2+has good potential for application as a novel and low-cost adsorbent.