Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ...Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.展开更多
Lignin is a significant secondary metabolite produced through the phenylpropanoid pathway.As a vital component of the plant cell wall,lignin affects various fruit characteristics,including size,seed quantity,and firmn...Lignin is a significant secondary metabolite produced through the phenylpropanoid pathway.As a vital component of the plant cell wall,lignin affects various fruit characteristics,including size,seed quantity,and firmness.In this study,we conducted comprehensive identification and phylogenetic analysis of 265 Caffeic acid O-methyltransferase(COMT)genes across ten different plant species,including Vaccinium corymbosum and four other Vaccinium species.The results reveal that VcCOMT38 is a promising structural gene for the biosynthesis of lignin in blueberry.An in vitro enzymatic assay of VcCOMT38 demonstrated that it is a special enzyme in the lignin biosynthesis pathway and prefers to use caffeic acid as a substrate over 5-hydroxyferulic acid.Transient overexpression and silencing of VcCOMT38 in Vaccinium corymbosum‘Northland’fruits demonstrated that VcCOMT38 participates in lignin biosynthesis and contributes to both an increased number of immature seeds and enhanced fruit firmness.The heterologous overexpression of VcCOMT38 in Nicotiana benthamiana revealed that this gene could increase the lignin content and the syringyl/guaiacyl(S/G)ratio,which determines the maximum monomer yield during lignin depolymerization.These results highlight VcCOMT38 as a crucial gene in lignin biosynthesis and its potential for improving lignin production in industry through genetically modified woody plants.展开更多
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct...Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performa...The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.展开更多
Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances ar...Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.展开更多
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a...Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.展开更多
Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electro...Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
The effects of nitric oxide (NO) and exogenous ethylene on ethylene biosynthesis in harvested Feicheng peaches were studied. The antagonistic actions between NO and exogenous ethylene was also investigated. The Feic...The effects of nitric oxide (NO) and exogenous ethylene on ethylene biosynthesis in harvested Feicheng peaches were studied. The antagonistic actions between NO and exogenous ethylene was also investigated. The Feicheng peaches were fumigated with 10μL L^-1 NO, 1 000 μL L^-1 ethylene, or 10 μL L^-1 NO plus 1 000 μL L^-1 ethylene for 3 h. The results suggested that application of exogenous ethylene promoted the biosynthesis of endogenous ethylene in peach fruit. The treatment with NO remarkably inhibited the biosynthesis of ethylene by significantly reducing the activities of ACC synthase (ACS) and ACC oxidase (ACO). Ethylene biosynthesis in the fruits treated with both NO and exogenous ethylene was lower than that in fruits treated with exogenous ethylene alone but higher than that in fruits treated with NO alone, suggesting that there were antagonistic actions between NO and exogenous ethylene. NO could inhibit the biosynthesis of ethylene and the catalysis of exogenous ethylene during ethylene biosynthesis in peach fruits.展开更多
Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hind...Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.展开更多
Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.T...Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.This study was conducted to evaluate the protective efficiency of cinnamaldehyde-loaded chitosan nanoparticles(Cin@CSNPs)against oxidative damage and genotoxicity of ZnO-NPs in mice.ZnO-NPs were biosynthesized using the extract of fresh leaves of Mentha pulegium L.Cin was extracted from cinnamon essential oil,and was loaded into chitosan nanoparticle(Cin@CSNPs).Both ZnO-NPs,Cin@CSNPs and CSNPs were characterized.The in vitro release of Cin@CSNPs was determined.In the biological study,6 groups of male BALB/c mice were treated by gavage for 3 weeks as follows,control group,the group received ZnO-NPs(25 mg/kg b.w),the groups received Cin@CSNPs at low dose(50 mg/kg b.w)or high dose(100 mg/kg b.w),and the groups received ZnO-NPs plus Cin@CSNPs at the 2 tested doses.Blood and tissue samples were collected for different biochemical,genetical and histological studies.The particle size of ZnO-NPs,CSNPs,and Cin@CSNPs were(20.78±2.60),(170.0±3.7),and(218.23±2.90)nm,andξ-potential were(32.7±4.6),(8.32±0.27)and(4.80±0.21)mV,respectively.ZnO-NPs disturbed the biochemical and oxidative stress indices,AFP,CEA,TNF-α,chromosomal aberrations in somatic and germ cells,and sperm abnormality along with severe pathological changes in the hepatic,renal,and testicular tissues.Cin@CSNPs improved significantly all the parameters tested and the histological picture in a dose-dependent.Therefore,the biosynthesized ZnO-NPs exhibit oxidative damage and genotoxicity,and Cin@CSNPs have potential protective effects against the risks of ZnO-NPs and may be a promising tool to overcome the challenges of using Cin in food and pharmaceuticals applications.展开更多
Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by...Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc acetate and Ixora coccinea leaf extract. Formation of zinc oxide nanoparticles has been confirmed by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering analysis (DLS), zetapotential study and Scanning Electron Microscope with the Energy Dispersive X-ray studies (EDX). Dynamic light scattering analysis shows average particle size of 145.1 nm whereas high zeta potential value confirms the stability of formed zinc oxide nanoparticles. The Scanning Electron Microscope reveals spherical morphology of nanoparticles and Energy Dispersive X-ray analysis confirms the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles from Ixora coccinea leaves are expected to have applications in biomedical, cosmetic industries, biotechnology, sensors, medical, catalysis, optical device, coatings, drug delivery and water remediation, and also may be applied for electronic and magneto-electric devices. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production.展开更多
In this study we designed a novel,cost‐efficient and green method for the synthesis of copper nanoparticles(Cu NPs)supported on manganese dioxide(MnO2)NPs,using Centella asiatica L.leaf extract as a naturally‐source...In this study we designed a novel,cost‐efficient and green method for the synthesis of copper nanoparticles(Cu NPs)supported on manganese dioxide(MnO2)NPs,using Centella asiatica L.leaf extract as a naturally‐sourced reducing agent,without stabilizers or surfactants.This synthetic process is environmentally‐friendly and avoids the use of toxic reducing agents.Phenolic hydroxyl groups in the leaf extract are believed to reduce Cu2+in solution to generate Cu NPs that are subsequently stabilized on the MnO2NP surfaces.The resulting Cu/MnO2nanocomposite was fully characterized using X‐ray diffraction,transmission electron microscopy,field emission scanning electron microscopy,energy‐dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy.This material was found to function as a highly active,efficient and recyclable heterogeneous catalyst for the reduction of Congo red,rhodamine B and methylene blue as well as nitro compounds such as2,4‐dinitrophenylhydrazine and4‐nitrophenol in the presence of NaBH4in aqueous media at ambient temperature.The high stability of the Cu/MnO2nanocomposite also allows the catalyst to be separated and reused several times without any significant loss of activity.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Bioactive materials obtained from plant bio-resources offer immense attention for development and production of nanotechnology enabled products for biomedical applications.In the present study,Ficus hispida leaf extra...Bioactive materials obtained from plant bio-resources offer immense attention for development and production of nanotechnology enabled products for biomedical applications.In the present study,Ficus hispida leaf extract(FHLE)was used as a stabilising agent for the environmentally benign synthesis of zinc oxide nanoparticles(ZnO-NPs)which were investigated for prospective versatile applications(anticancer and photocatalytic activities).The formation of ZnO-NPs was confirmed by UV–visible spectra.Wurtzite(hexagonal)form of the herb-assisted synthesised ZnO-NPs with particle size ranging from 20 to 200 nm was confirmed by transmission electron microscopy(TEM)analysis.In vitro analysis was carried out against Dalton's lymphoma ascites(DLA)cell lines by trypan blue assay,the results revealed 96%inhibition at concentration of 200μg ml-1,and the photodegradation experiments carried out for degradation of Congo red revealed complete degradation of the dye after 70 min of exposure to UV light.展开更多
In order to explore an efficient and green method to deal with nitrobenzene(NB)pollutant,reduced graphene oxide(r GO)as an electron shuttle was applied to enhance the extracellular electron transfer(EET)process of Geo...In order to explore an efficient and green method to deal with nitrobenzene(NB)pollutant,reduced graphene oxide(r GO)as an electron shuttle was applied to enhance the extracellular electron transfer(EET)process of Geobacter sulfurreducens,which was a typical electrochemically active bacteria(EAB).In this study,r GO biosynthesis was achieved via the reduction of graphene oxide(GO)by G.sulfurreducens PCA within 3 days.Also,the r GOPCA combining system completely reduced 50-200μmol/L of NB to aniline as end product within one day.SEM characterization revealed that PCA cells were partly wrapped by rGO,and therefore the distance of electron transfer between strain PCA and r GO material was reduced.Beside,the ID/IGof GO,r GO,and r GO-PCA combining system were 0.990,1.293 and 1.31,respectively.Moreover,highest currents were observed in r GO-PCA-NB as 12.950μA/-12.560μA at -408 m V/156 m V,attributing to the faster electron transfer efficiency in EET process.Therefore,the NB reduction was mainly due to:(I)direct EET process from G.sulfurreducens PCA to NB;(II)r GO served as electron shuttle and accelerated electron transfer to NB,which was the main degradation pathway.Overall,the biosynthesis of r GO via GO reduction by Geobacter promoted the NB removal process,which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
文摘Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance.
文摘Lignin is a significant secondary metabolite produced through the phenylpropanoid pathway.As a vital component of the plant cell wall,lignin affects various fruit characteristics,including size,seed quantity,and firmness.In this study,we conducted comprehensive identification and phylogenetic analysis of 265 Caffeic acid O-methyltransferase(COMT)genes across ten different plant species,including Vaccinium corymbosum and four other Vaccinium species.The results reveal that VcCOMT38 is a promising structural gene for the biosynthesis of lignin in blueberry.An in vitro enzymatic assay of VcCOMT38 demonstrated that it is a special enzyme in the lignin biosynthesis pathway and prefers to use caffeic acid as a substrate over 5-hydroxyferulic acid.Transient overexpression and silencing of VcCOMT38 in Vaccinium corymbosum‘Northland’fruits demonstrated that VcCOMT38 participates in lignin biosynthesis and contributes to both an increased number of immature seeds and enhanced fruit firmness.The heterologous overexpression of VcCOMT38 in Nicotiana benthamiana revealed that this gene could increase the lignin content and the syringyl/guaiacyl(S/G)ratio,which determines the maximum monomer yield during lignin depolymerization.These results highlight VcCOMT38 as a crucial gene in lignin biosynthesis and its potential for improving lignin production in industry through genetically modified woody plants.
基金supported by Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korea Government(MOTIE)(RS-2022-00154720,Technology Innovation Program Development of next-generation power semiconductor based on Si-on-SiC structure)the National Research Foundation of Korea(NRF)by the Korea government(RS-2023-NR076826)Global-Learning&Academic Research Institution for Master's·PhD students,and Postdocs(LAMP)Program of the National Research Foundation of Korea(NRF)by the Ministry of Education(No.RS-2024-00443714).
文摘Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
基金supported by the National Natural ScienceFoundation of China(Grant No.52203332)。
文摘The thermal decomposition characteristic of ammonium perchlorate(AP)represents a critical factor in determining the performance of solid propellants,which has aroused significant interest on the structure and performance improvement of kinds of catalysts.In this study,bimetallic metal-organic frameworks(MOFs),such as CuCo-BTC(BTC=1,3,5-Benzenetricarboxylic acid,H_(3)BTC),CuNi-BTC,and CoNi-BTC,were synthesized by solvothermal(ST)and spray-drying(SD)methods,and then calcined at 400℃for 2 h to form metal oxides.The catalysts as well as their catalytic effects for AP decomposition were characterized by FTIR,XRD,SEM,XPS,TG,DSC,TG-IR,EIS,CV,and LSV.It was found that the rapid coordination of metal ions with ligands during spray drying may lead to catalytic structural defects,promoting the exposure of reactive active sites and increasing the catalytic active region.The results showed that the addition of 2 wt%binary transition metal oxides(BTMOs)as catalysts significantly reduced the high-temperature decomposition(HTD)temperature of AP and enhanced its heat release.Of particular significance is the observation that SD-CoNiO_(x),prepared by spray-drying,reduced the decomposition temperature of AP from 413.26℃(pure AP)to 306℃and enhanced the heat release from 256.79 J/g(pure AP)to 1496.82 J/g,while concomitantly reducing the activation energy by 42%.By analysing the gaseous products during the decomposition of AP+SD-CoNiO_(x)and AP+ST-CoNiO_(x),it was found that SD-CoNiO_(x)could significantly increase the content of high-valent nitrogen oxides during the AP decomposition reaction,which indicates that the BTMOs prepared by spray-drying in the reaction system are more conducive to accelerating the electron transfer in the thermal decomposition process of AP,and can provide a high concentration of reactive oxygen species that oxidize AP to high-valent nitrogen oxide-containing compounds.The present study shows that the structure selectivity of the spray-drying technique influences surfactant molecular arrangement on catalyst surfaces,resulting in their ability to promote higher electron transfer during the catalytic process.Therefore,BTMOs prepared by spray drying method have higher potential for application.
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金funding support from General Research Fund[Project No.14300525]from the Research Grants Council(RGC)of Hong Kong SAR,Chinafunding support from Natural Science Foundation of China(NSFC)Young Scientists Fund(Project No.22305203)+2 种基金NSFC Projects Nos.22309123,22422303,22303011,22033002,92261112 and U21A20328support from the Hong Kong Branch of National Precious Metals Material Engineering Research Center(NPMM)at City University of Hong Kongsupport from Young Collaborative Research Grant[Project No.C1003-23Y]support from RGC of Hong Kong SAR,China.
文摘Electrocatalytic nitric oxide(NO)reduction reaction(NORR)is a promising and sustainable process that can simultaneously realize green ammonia(NH3)synthesis and hazardous NO removal.However,current NORR performances are far from practical needs due to the lack of efficient electrocatalysts.Engineering the lattice of metal-based nanomaterials via phase control has emerged as an effective strategy to modulate their intrinsic electrocatalytic properties.Herein,we realize boron(B)-insertion-induced phase regulation of rhodium(Rh)nanocrystals to obtain amorphous Rh_(4)B nanoparticles(NPs)and hexagonal close-packed(hcp)RhB NPs through a facile wet-chemical method.A high Faradaic efficiency(92.1±1.2%)and NH_(3) yield rate(629.5±11.0μmol h^(−1) cm^(−2))are achieved over hcp RhB NPs,far superior to those of most reported NORR nanocatalysts.In situ spectro-electrochemical analysis and density functional theory simulations reveal that the excellent electrocatalytic performances of hcp RhB NPs are attributed to the upshift of d-band center,enhanced NO adsorption/activation profile,and greatly reduced energy barrier of the rate-determining step.A demonstrative Zn-NO battery is assembled using hcp RhB NPs as the cathode and delivers a peak power density of 4.33 mW cm−2,realizing simultaneous NO removal,NH3 synthesis,and electricity output.
基金supported by the National Natural Science Foundation of China (No. 52374292)China Baowu Low Carbon Metallurgy Innovation Foundation, China (No. BWLCF202309)the Natural Science Foundation of Changsha City, China (No. KQ2208271)。
文摘Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface.
基金the financial support from the National Natural Science Foundation of China(52172110,52472231,52311530113)Shanghai"Science and Technology Innovation Action Plan"intergovernmental international science and technology cooperation project(23520710600)+1 种基金Science and Technology Commission of Shanghai Municipality(22DZ1205600)the Central Guidance on Science and Technology Development Fund of Zhejiang Province(2024ZY01011)。
文摘Investigating structural and hydroxyl group effects in electrooxidation of alcohols to value-added products by solid-acid electrocatalysts is essential for upgrading biomass alcohols.Herein,we report efficient electrocatalytic oxidations of saturated alcohols(C_(1)-C_(6))to selectively form formate using Ni Co hydroxide(Ni Co-OH)derived Ni Co_(2)O_(4)solid-acid electrocatalysts with balanced Lewis acid(LASs)and Brønsted acid sites(BASs).Thermal treatment transforms BASs-rich(89.6%)Ni Co-OH into Ni Co_(2)O_(4)with nearly equal distribution of LASs(53.1%)and BASs(46.9%)which synergistically promote adsorption and activation of OH-and alcohol molecules for enhanced oxidation activity.In contrast,BASs-enriched Ni Co-OH facilitates formation of higher valence metal sites,beneficial for water oxidation.The combined experimental studies and theoretical calculation imply the oxidation ability of C1-C6alcohols increases as increased number of hydroxyl groups and decreased HOMO-LUMO gaps:methanol(C_(1))<ethylene glycol(C_(2))<glycerol(C3)<meso-erythritol(C4)<xylitol(C5)<sorbitol(C6),while the formate selectivity shows the opposite trend from 100 to 80%.This study unveils synergistic roles of LASs and BASs,as well as hydroxyl group effect in electro-upgrading of alcohols using solid-acid electrocatalysts.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
文摘The effects of nitric oxide (NO) and exogenous ethylene on ethylene biosynthesis in harvested Feicheng peaches were studied. The antagonistic actions between NO and exogenous ethylene was also investigated. The Feicheng peaches were fumigated with 10μL L^-1 NO, 1 000 μL L^-1 ethylene, or 10 μL L^-1 NO plus 1 000 μL L^-1 ethylene for 3 h. The results suggested that application of exogenous ethylene promoted the biosynthesis of endogenous ethylene in peach fruit. The treatment with NO remarkably inhibited the biosynthesis of ethylene by significantly reducing the activities of ACC synthase (ACS) and ACC oxidase (ACO). Ethylene biosynthesis in the fruits treated with both NO and exogenous ethylene was lower than that in fruits treated with exogenous ethylene alone but higher than that in fruits treated with NO alone, suggesting that there were antagonistic actions between NO and exogenous ethylene. NO could inhibit the biosynthesis of ethylene and the catalysis of exogenous ethylene during ethylene biosynthesis in peach fruits.
基金supported by the Xinjiang Autonomous Region Key Research Project(No.2022D01D31)the Start-up Grant of Xinjiang University,the Basic Research Fund for Autonomous Region Universities(No.XJEDU2024P015)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C668).
文摘Although intermediate temperature solid oxide fuel cells(IT-SOFCs)show great potential to address energy conversion challenges,the sluggish oxygen reduction reaction(ORR)kinetics of cathode materials has severely hindered extended applications.Herein,we have demonstrated that Bi^(3+)doping on the A-site synergistically regulates the phase transition and electron spin state in La_(0.3)Bi_(0.3)Ca_(0.4)FeO_(3-δ)(LBCF3)for improved performance.An orthorhombic to cubic phase transition occurred with Bi^(3+)doping increases oxygen vacancy concentration and thus increases oxygen ion migration capacity.Simultaneously,the change of Fe from low to medium electron spin state strengths O_(2)adsorption and improves catalytic performances.Consequently,a peak power density improvement up to 48%(from 1.21 to 1.79 W·cm^(-2))at 800℃ is realized in the anodesupported single cell using LBCF3 as cathode,which remains stable for over 270 h at 750℃.
基金supported by the National Research Centre,Dokki,Cairo,Egypt project#13050302.
文摘Synthesis of zinc oxide nanoparticles(ZnO-NPs)via green method is an outstanding alternative to conventional/regular methods;however,the safety or toxicity of the biosynthesized ZnO-NPs in vivo is not fully explored.This study was conducted to evaluate the protective efficiency of cinnamaldehyde-loaded chitosan nanoparticles(Cin@CSNPs)against oxidative damage and genotoxicity of ZnO-NPs in mice.ZnO-NPs were biosynthesized using the extract of fresh leaves of Mentha pulegium L.Cin was extracted from cinnamon essential oil,and was loaded into chitosan nanoparticle(Cin@CSNPs).Both ZnO-NPs,Cin@CSNPs and CSNPs were characterized.The in vitro release of Cin@CSNPs was determined.In the biological study,6 groups of male BALB/c mice were treated by gavage for 3 weeks as follows,control group,the group received ZnO-NPs(25 mg/kg b.w),the groups received Cin@CSNPs at low dose(50 mg/kg b.w)or high dose(100 mg/kg b.w),and the groups received ZnO-NPs plus Cin@CSNPs at the 2 tested doses.Blood and tissue samples were collected for different biochemical,genetical and histological studies.The particle size of ZnO-NPs,CSNPs,and Cin@CSNPs were(20.78±2.60),(170.0±3.7),and(218.23±2.90)nm,andξ-potential were(32.7±4.6),(8.32±0.27)and(4.80±0.21)mV,respectively.ZnO-NPs disturbed the biochemical and oxidative stress indices,AFP,CEA,TNF-α,chromosomal aberrations in somatic and germ cells,and sperm abnormality along with severe pathological changes in the hepatic,renal,and testicular tissues.Cin@CSNPs improved significantly all the parameters tested and the histological picture in a dose-dependent.Therefore,the biosynthesized ZnO-NPs exhibit oxidative damage and genotoxicity,and Cin@CSNPs have potential protective effects against the risks of ZnO-NPs and may be a promising tool to overcome the challenges of using Cin in food and pharmaceuticals applications.
文摘Green synthesis of metal oxide nanoparticles using plant extract is a promising alternative to traditional method of chemical synthesis. In this paper, we report the synthesis of nanostructured zinc oxide particles by biological method. Highly stable and spherical zinc oxide nanoparticles are produced by using zinc acetate and Ixora coccinea leaf extract. Formation of zinc oxide nanoparticles has been confirmed by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering analysis (DLS), zetapotential study and Scanning Electron Microscope with the Energy Dispersive X-ray studies (EDX). Dynamic light scattering analysis shows average particle size of 145.1 nm whereas high zeta potential value confirms the stability of formed zinc oxide nanoparticles. The Scanning Electron Microscope reveals spherical morphology of nanoparticles and Energy Dispersive X-ray analysis confirms the formation of highly pure zinc oxide nanoparticles. The zinc oxide nanoparticles from Ixora coccinea leaves are expected to have applications in biomedical, cosmetic industries, biotechnology, sensors, medical, catalysis, optical device, coatings, drug delivery and water remediation, and also may be applied for electronic and magneto-electric devices. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production.
文摘In this study we designed a novel,cost‐efficient and green method for the synthesis of copper nanoparticles(Cu NPs)supported on manganese dioxide(MnO2)NPs,using Centella asiatica L.leaf extract as a naturally‐sourced reducing agent,without stabilizers or surfactants.This synthetic process is environmentally‐friendly and avoids the use of toxic reducing agents.Phenolic hydroxyl groups in the leaf extract are believed to reduce Cu2+in solution to generate Cu NPs that are subsequently stabilized on the MnO2NP surfaces.The resulting Cu/MnO2nanocomposite was fully characterized using X‐ray diffraction,transmission electron microscopy,field emission scanning electron microscopy,energy‐dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy.This material was found to function as a highly active,efficient and recyclable heterogeneous catalyst for the reduction of Congo red,rhodamine B and methylene blue as well as nitro compounds such as2,4‐dinitrophenylhydrazine and4‐nitrophenol in the presence of NaBH4in aqueous media at ambient temperature.The high stability of the Cu/MnO2nanocomposite also allows the catalyst to be separated and reused several times without any significant loss of activity.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Bioactive materials obtained from plant bio-resources offer immense attention for development and production of nanotechnology enabled products for biomedical applications.In the present study,Ficus hispida leaf extract(FHLE)was used as a stabilising agent for the environmentally benign synthesis of zinc oxide nanoparticles(ZnO-NPs)which were investigated for prospective versatile applications(anticancer and photocatalytic activities).The formation of ZnO-NPs was confirmed by UV–visible spectra.Wurtzite(hexagonal)form of the herb-assisted synthesised ZnO-NPs with particle size ranging from 20 to 200 nm was confirmed by transmission electron microscopy(TEM)analysis.In vitro analysis was carried out against Dalton's lymphoma ascites(DLA)cell lines by trypan blue assay,the results revealed 96%inhibition at concentration of 200μg ml-1,and the photodegradation experiments carried out for degradation of Congo red revealed complete degradation of the dye after 70 min of exposure to UV light.
基金supported by the Science and Technology Innovation Program of Hunan Province(No.2022RC1026)Shenzhen Science and Technology Program(No.JCYJ20220530160412027)+3 种基金Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011807)the Project of the National Key Research and Development Program of China(No.2021YFC1910400)the Technical Innovation Leading Plan Project for Hunan High-tech Industry(Nos.2020SK2042 and 2022GK4062)the Key R&D Project of Hunan Province of China(No.2022SK2067)。
文摘In order to explore an efficient and green method to deal with nitrobenzene(NB)pollutant,reduced graphene oxide(r GO)as an electron shuttle was applied to enhance the extracellular electron transfer(EET)process of Geobacter sulfurreducens,which was a typical electrochemically active bacteria(EAB).In this study,r GO biosynthesis was achieved via the reduction of graphene oxide(GO)by G.sulfurreducens PCA within 3 days.Also,the r GOPCA combining system completely reduced 50-200μmol/L of NB to aniline as end product within one day.SEM characterization revealed that PCA cells were partly wrapped by rGO,and therefore the distance of electron transfer between strain PCA and r GO material was reduced.Beside,the ID/IGof GO,r GO,and r GO-PCA combining system were 0.990,1.293 and 1.31,respectively.Moreover,highest currents were observed in r GO-PCA-NB as 12.950μA/-12.560μA at -408 m V/156 m V,attributing to the faster electron transfer efficiency in EET process.Therefore,the NB reduction was mainly due to:(I)direct EET process from G.sulfurreducens PCA to NB;(II)r GO served as electron shuttle and accelerated electron transfer to NB,which was the main degradation pathway.Overall,the biosynthesis of r GO via GO reduction by Geobacter promoted the NB removal process,which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.