Non-thermal plasma technology is a new type of odor treatment processing.We deal with H2Sfrom waste gas emission using non-thermal plasma generated by dielectric barrier discharge.On the basis of two criteria,removal ...Non-thermal plasma technology is a new type of odor treatment processing.We deal with H2Sfrom waste gas emission using non-thermal plasma generated by dielectric barrier discharge.On the basis of two criteria,removal efficiency and absolute removal amount,we deeply investigate the changes in electrical parameters and process parameters,and the reaction process of the influence of ozone on H2S gas removal.The experimental results show that H2S removal efficiency is proportional to the voltage,frequency,power,residence time and energy efficiency,while it is inversely proportional to the initial concentration of H2S gas,and ozone concentration.This study lays the foundations of non-thermal plasma technology for further commercial application.展开更多
The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like ...The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.展开更多
基金supported by the Open Project Program of State Key Laboratory of Petroleum Pollution Control(No.PPC2017010)CNPC Research Institute of Safety and Environmental Technology,and State Key Laboratory of Solid Waste Reuse for Building Materials(SWR2017002)+2 种基金National Natural Science Foundation of China(No.51108453)Program for New Century Excellent Talents in University(No.NCET120967)the Fundamental Research Funds for the Central Universities(No.2009QH03)
文摘Non-thermal plasma technology is a new type of odor treatment processing.We deal with H2Sfrom waste gas emission using non-thermal plasma generated by dielectric barrier discharge.On the basis of two criteria,removal efficiency and absolute removal amount,we deeply investigate the changes in electrical parameters and process parameters,and the reaction process of the influence of ozone on H2S gas removal.The experimental results show that H2S removal efficiency is proportional to the voltage,frequency,power,residence time and energy efficiency,while it is inversely proportional to the initial concentration of H2S gas,and ozone concentration.This study lays the foundations of non-thermal plasma technology for further commercial application.
基金This work was supported by the National Natural Science Foundation of China (No.20776089) and the New Century Excellent Talents Program of Ministry of Education (No.NCET-05-0783). The State Key Laboratory of Polymer Materials Engineering in Sichuan University was acknowledged for providing dmol3 modules and Prof. Ying Xue, Xiang-yuan Li, and Quan Zhu were grateful for the useful discussions.
文摘The process and mechanism of the ligand volume controlled Pd(PR3)2 (PR3=PH3, PMe3, and PtBu3) oxidative addition with aryl bromide were investigated, using density functional theory method with the conductor-like screening model. Association pathway and dissocia-tion pathway were investigated by the comparison of several energies. The cleavage energy of Pd(PR3)2 complex was calculated, as well as the oxidative addition reaction barrier energy of Pd(PR3)n (n=1,2) with aryl bromide in N,N-dimethylformamide solvent. This study proved that the ligands volume possessed a great impact on the mechanism of oxidative addition: less bulky ligand palladium associated with aryl bromide via two donor ligands,but larger bulky ligand palladium coordinated via monoligand.