期刊文献+
共找到6,645篇文章
< 1 2 250 >
每页显示 20 50 100
Changes in factor profiles deriving from photochemical losses of volatile organic compounds:Insight from daytime and nighttime positive matrix factorization ana
1
作者 Baoshuang Liu Tao Yang +9 位作者 Sicong Kang Fuquan Wang Haixu Zhang Man Xu Wei Wang Jinrui Bai Shaojie Song Qili Dai Yinchang Feng Philip K.Hopke 《Journal of Environmental Sciences》 2025年第5期627-639,共13页
Substantial effects of photochemical reaction losses of volatile organic compounds(VOCs)on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data ... Substantial effects of photochemical reaction losses of volatile organic compounds(VOCs)on factor profiles can be investigated by comparing the differences between daytime and nighttime dispersion-normalized VOC data resolved profiles.Hourly speciated VOC data measured in Shijiazhuang,China from May to September 2021 were used to conduct study.The mean VOC concentration in the daytime and at nighttime were 32.8 and 36.0 ppbv,respectively.Alkanes and aromatics concentrations in the daytime(12.9 and 3.08 ppbv)were lower than nighttime(15.5 and 3.63 ppbv),whereas that of alkenes showed the opposite tendency.The concentration differences between daytime and nighttime for alkynes and halogenated hydrocarbonswere uniformly small.The reactivities of the dominant species in factor profiles for gasoline emissions,natural gas and diesel vehicles,and liquefied petroleum gas were relatively low and their profiles were less affected by photochemical losses.Photochemical losses produced a substantial impact on the profiles of solvent use,petrochemical industry emissions,combustion sources,and biogenic emissions where the dominant species in these factor profiles had high reactivities.Although the profile of biogenic emissions was substantially affected by photochemical loss of isoprene,the low emissions at nighttime also had an important impact on its profile.Chemical losses of highly active VOC species substantially reduced their concentrations in apportioned factor profiles.This study results were consistent with the analytical results obtained through initial concentration estimation,suggesting that the initial concentration estimation could be the most effective currently availablemethod for the source analyses of active VOCs although with uncertainty. 展开更多
关键词 Volatile organic compounds Dispersion normalization Photochemical loss Factor profile Positive matrix factorization
原文传递
Predicting CircRNA-Disease Associations via Non-Negative Matrix Factorization Fused with Multiple Similarity Networks
2
作者 LU Pengli LI Shiying 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期709-719,共11页
CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs a... CircRNAs,widely found throughout the human bodies,play a crucial role in regulating various biological processes and are closely linked to complex human diseases.Investigating potential associations between circRNAs and diseases can enhance our understanding of diseases and provide new strategies and tools for early diagnosis,treatment,and disease prevention.However,existing models have limitations in accurately capturing similarities,handling the sparse and noise attributes of association networks,and fully leveraging bioinformatical aspects from multiple viewpoints.To address these issues,this study introduces a new non-negative matrix factorization-based framework called NMFMSN.First,we incorporate circRNA sequence data and disease semantic information to compute circRNA and disease similarity,respectively.Given the sparse known associations between circRNAs and diseases,we reconstruct the network to complete more associations by imputing missing links based on neighboring circRNA and disease interactions.Finally,we integrate these two similarity networks into a non-negative matrix factorization framework to identify potential circRNA-disease associations.Upon conducting 5-fold cross-validation and leave-one-out cross-validation,the AUC values for NMFMSN reach 0.9712 and 0.9768,respectively,outperforming the currently most advanced models.Case studies on lung cancer and hepatocellular carcinoma show that NMFMSN is a good way to predict new associations between circRNAs and diseases. 展开更多
关键词 circRNA-disease associations circRNA sequence data disease semantic information non-negative matrix factorization
原文传递
Source apportionment of PM_(2.5) using dispersion normalized positive matrix factorization(DN-PMF)in Beijing and Baoding,China
3
作者 Ilhan Ryoo Taeyeon Kim +6 位作者 Jiwon Ryu Yeonseung Cheong Kwang-joo Moon Kwon-ho Jeon Philip K.Hopke Seung-Muk Yi Jieun Park 《Journal of Environmental Sciences》 2025年第9期395-408,共14页
Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were freque... Fine particulatematter(PM_(2.5))samples were collected in two neighboring cities,Beijing and Baoding,China.High-concentration events of PM_(2.5) in which the average mass concentration exceeded 75μg/m^(3) were frequently observed during the heating season.Dispersion Normalized Positive Matrix Factorization was applied for the source apportionment of PM_(2.5) as minimize the dilution effects of meteorology and better reflect the source strengths in these two cities.Secondary nitrate had the highest contribution for Beijing(37.3%),and residential heating/biomass burning was the largest for Baoding(27.1%).Secondary nitrate,mobile,biomass burning,district heating,oil combustion,aged sea salt sources showed significant differences between the heating and non-heating seasons in Beijing for same period(2019.01.10–2019.08.22)(Mann-Whitney Rank Sum Test P<0.05).In case of Baoding,soil,residential heating/biomass burning,incinerator,coal combustion,oil combustion sources showed significant differences.The results of Pearson correlation analysis for the common sources between the two cities showed that long-range transported sources and some sources with seasonal patterns such as oil combustion and soil had high correlation coefficients.Conditional Bivariate Probability Function(CBPF)was used to identify the inflow directions for the sources,and joint-PSCF(Potential Source Contribution Function)was performed to determine the common potential source areas for sources affecting both cities.These models facilitated a more precise verification of city-specific influences on PM_(2.5) sources.The results of this study will aid in prioritizing air pollution mitigation strategies during the heating season and strengthening air quality management to reduce the impact of downwind neighboring cities. 展开更多
关键词 Source apportionment Dispersion normalized positive matrix factorization Adjacent cities Inter-city impact Source location Heating season Air quality management
原文传递
Health risk assessment of trace metal(loid)s in agricultural soils based on Monte Carlo simulation coupled with positive matrix factorization model in Chongqing, southwest China 被引量:4
4
作者 MA Jie CHU Lijuan +3 位作者 SUN Jing WANG Shenglan GE Miao DENG Li 《Journal of Mountain Science》 SCIE CSCD 2024年第1期100-112,共13页
This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ... This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors. 展开更多
关键词 Monte Carlo simulation Health risk assessment Trace metal(loid)s Positive matrix factorization Agricultural soils
原文传递
Efficient Clustering Network Based on Matrix Factorization
5
作者 Jieren Cheng Jimei Li +2 位作者 Faqiang Zeng Zhicong Tao and Yue Yang 《Computers, Materials & Continua》 SCIE EI 2024年第7期281-298,共18页
Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of ... Contrastive learning is a significant research direction in the field of deep learning.However,existing data augmentation methods often lead to issues such as semantic drift in generated views while the complexity of model pre-training limits further improvement in the performance of existing methods.To address these challenges,we propose the Efficient Clustering Network based on Matrix Factorization(ECN-MF).Specifically,we design a batched low-rank Singular Value Decomposition(SVD)algorithm for data augmentation to eliminate redundant information and uncover major patterns of variation and key information in the data.Additionally,we design a Mutual Information-Enhanced Clustering Module(MI-ECM)to accelerate the training process by leveraging a simple architecture to bring samples from the same cluster closer while pushing samples from other clusters apart.Extensive experiments on six datasets demonstrate that ECN-MF exhibits more effective performance compared to state-of-the-art algorithms. 展开更多
关键词 Contrastive learning CLUSTERING matrix factorization
在线阅读 下载PDF
Symmetric Nonnegative Matrix Factorization for Vertex Centrality in Complex Networks
6
作者 LU Pengli CHEN Wei +1 位作者 GUO Yuhong CHEN Yahong 《Journal of Shanghai Jiaotong university(Science)》 2024年第6期1037-1049,共13页
One of the most important problems in complex networks is to identify the influential vertices for understanding and controlling of information diffusion and disease spreading.Most of the current centrality algorithms... One of the most important problems in complex networks is to identify the influential vertices for understanding and controlling of information diffusion and disease spreading.Most of the current centrality algorithms focus on single feature or manually extract the attributes,which occasionally results in the failure to fully capture the vertex’s importance.A new vertex centrality approach based on symmetric nonnegative matrix factorization(SNMF),called VCSNMF,is proposed in this paper.For highlight the characteristics of a network,the adjacency matrix and the degree matrix are fused to represent original data of the network via a weighted linear combination.First,SNMF automatically extracts the latent characteristics of vertices by factorizing the established original data matrix.Then we prove that each vertex’s composite feature which is constructed with one-dimensional factor matrix can be approximated as the term of eigenvector associated with the spectral radius of the network,otherwise obtained by the factor matrix on the hyperspace.Finally,VCSNMF integrates the composite feature and the topological structure to evaluate the performance of vertices.To verify the effectiveness of the VCSNMF criterion,eight existing centrality approaches are used as comparison measures to rank influential vertices in ten real-world networks.The experimental results assert the superiority of the method. 展开更多
关键词 complex networks CENTRALITY symmetric nonnegative matrix factorization(SNMF)
原文传递
Feature Extraction and Recognition for Rolling Element Bearing Fault Utilizing Short-Time Fourier Transform and Non-negative Matrix Factorization 被引量:29
7
作者 GAO Huizhong LIANG Lin +1 位作者 CHEN Xiaoguang XU Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期96-105,共10页
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar... Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space. 展开更多
关键词 time-frequency distribution non-negative matrix factorization rolling element bearing feature extraction
在线阅读 下载PDF
Obtaining Profiles Based on Localized Non-negative Matrix Factorization 被引量:2
8
作者 JIANGJi-xiang XUBao-wen +1 位作者 LUJian-jiang ZhouXiao-yu 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期580-584,共5页
Nonnegative matrix factorization (NMF) is a method to get parts-based features of information and form the typical profiles. But the basis vectors NMF gets are not orthogonal so that parts-based features of informatio... Nonnegative matrix factorization (NMF) is a method to get parts-based features of information and form the typical profiles. But the basis vectors NMF gets are not orthogonal so that parts-based features of information are usually redundancy. In this paper, we propose two different approaches based on localized non-negative matrix factorization (LNMF) to obtain the typical user session profiles and typical semantic profiles of junk mails. The LNMF get basis vectors as orthogonal as possible so that it can get accurate profiles. The experiments show that the approach based on LNMF can obtain better profiles than the approach based on NMF. Key words localized non-negative matrix factorization - profile - log mining - mail filtering CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (60373066, 60303024), National Grand Fundamental Research 973 Program of China (2002CB312000), National Research Foundation for the Doctoral Program of Higher Education of China (20020286004).Biography: Jiang Ji-xiang (1980-), male, Master candidate, research direction: data mining, knowledge representation on the Web. 展开更多
关键词 localized non-negative matrix factorization PROFILE log mining mail filtering
在线阅读 下载PDF
PM_(2.5) source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model 被引量:3
9
作者 Adib Kfoury Frederic Ledoux +3 位作者 Cloe Roche Gilles Delmaire Gilles Roussel Dominique Courcot 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第2期114-128,共15页
The constrained weighted-non-negative matrix factorization(CW-NMF)hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter ... The constrained weighted-non-negative matrix factorization(CW-NMF)hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter less than 2.5μm)composition in Dunkerque,Northern France.Semi-diurnal PM_(2.5)samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals,water-soluble ions,and total carbon using inductively coupled plasma–atomic emission spectrometry(ICP-AES),ICP-mass spectrometry(ICP-MS),ionic chromatography and micro elemental carbon analyzer.The elemental composition shows that NO_(3)^(-),SO_(4)^(2-),NH_4~+and total carbon are the main PM_(2.5)constituents.Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced.The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios.Moreover Rb/Cr,Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions.The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation.Eleven source profiles with various contributions were identified:8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities.Between them,secondary nitrates,secondary sulfates and combustion profiles give the highest contributions and account for 93%of the PM_(2.5)concentration.The steelwork facilities contribute in about 2%of the total PM_(2.5)concentration and appear to be the main source of Cr,Cu,Fe,Mn,Zn. 展开更多
关键词 PM_(2.5) Receptor modeling Non-negative matrix factorization Source apportionment Steelworks
原文传递
Recommendation Algorithm Based on Probabilistic Matrix Factorization with Adaboost 被引量:3
10
作者 Hongtao Bai Xuan Li +3 位作者 Lili He Longhai Jin Chong Wang Yu Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1591-1603,共13页
A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,s... A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,such as diabetes.Current dietary recommendations employ association rules,content-based collaborative filtering,and constraint-based methods,which have several limitations.These limitations are due to the existence of a special user group and an imbalance of non-simple attributes.Making use of traditional dietary recommendation algorithm researches,we combine the Adaboost classifier with probabilistic matrix factorization.We present a personalized diet recommendation algorithm by taking advantage of probabilistic matrix factorization via Adaboost.A probabilistic matrix factorization method extracts the implicit factors between individual food preferences and nutritional characteristics.From this,we can make use of those features with strong influence while discarding those with little influence.After incorporating these changes into our approach,we evaluated our algorithm’s performance.Our results show that our method performed better than others at matching preferred foods with dietary requirements,benefiting user health as a result.The algorithm fully considers the constraint relationship between users’attributes and nutritional characteristics of foods.Considering many complex factors in our algorithm,the recommended food result set meets both health standards and users’dietary preferences.A comparison of our algorithm with others demonstrated that our method offers high accuracy and interpretability. 展开更多
关键词 RECOMMENDATION probabilistic matrix factorization ADABOOST characteristics correlation
在线阅读 下载PDF
Total Variation Constrained Non-Negative Matrix Factorization for Medical Image Registration 被引量:4
11
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Zhen Chen Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1025-1037,共13页
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorizati... This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms. 展开更多
关键词 Data clustering dimension reduction image registration non-negative matrix factorization(NMF) total variation(TV)
在线阅读 下载PDF
Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization 被引量:1
12
作者 Xu Liu Tiao-Tiao Liu +3 位作者 Wen-Wen Bai Hu Yi Shuang-Yan Li Xin Tian 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第3期279-286,共8页
Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor... Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory. 展开更多
关键词 sparse non-negative matrix factorization multi-channel local field potentials working memory prefrontal cortex
原文传递
Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization 被引量:1
13
作者 Zhuqing Jiao Yixin Ji +1 位作者 Tingxuan Jiao Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期845-871,共27页
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di... Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes. 展开更多
关键词 Brain functional network sub-network functional connectivity graph regularized nonnegative matrix factorization(GNMF) aggregation matrix
在线阅读 下载PDF
Orthogonal nonnegative matrix factorization based local hidden Markov model for multimode process monitoring 被引量:3
14
作者 Fan Wang Honglin Zhu +1 位作者 Shuai Tan Hongbo Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第7期856-860,共5页
Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively... Traditional data driven fault detection methods assume that the process operates in a single mode so that they cannot perform well in processes with multiple operating modes. To monitor multimode processes effectively,this paper proposes a novel process monitoring scheme based on orthogonal nonnegative matrix factorization(ONMF) and hidden Markov model(HMM). The new clustering technique ONMF is employed to separate data from different process modes. The multiple HMMs for various operating modes lead to higher modeling accuracy.The proposed approach does not presume the distribution of data in each mode because the process uncertainty and dynamics can be well interpreted through the hidden Markov estimation. The HMM-based monitoring indication named negative log likelihood probability is utilized for fault detection. In order to assess the proposed monitoring strategy, a numerical example and the Tennessee Eastman process are used. The results demonstrate that this method provides efficient fault detection performance. 展开更多
关键词 Multimode processFault detectionHidden Markov modelOrthogonal nonnegative matrix factorization
在线阅读 下载PDF
Minimum distance constrained nonnegative matrix factorization for hyperspectral data unmixing 被引量:2
15
作者 于钺 SunWeidong 《High Technology Letters》 EI CAS 2012年第4期333-342,共10页
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop... This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently. 展开更多
关键词 hyperspectral data nonnegative matrix factorization (NMF) spectral unmixing convex function projected gradient (PG)
在线阅读 下载PDF
Image Fusion Based on Complex Contourlet Transform and Nonnegative Matrix Factorization 被引量:1
16
作者 吴一全 侯雯 吴诗婳 《Transactions of Tianjin University》 EI CAS 2012年第4期266-270,共5页
An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-freque... An image fusion method combining complex contourlet transform(CCT) with nonnegative matrix factorization(NMF) is proposed in this paper.After two images are decomposed by CCT,NMF is applied to their highand low-frequency components,respectively,and finally an image is synthesized.Subjective-visual-quality of the image fusion result is compared with those of the image fusion methods based on NMF and the combination of wavelet /contourlet /nonsubsampled contourlet with NMF.The experimental results are evaluated quantitatively,and the running time is also contrasted.It is shown that the proposed image fusion method can gain larger information entropy,standard deviation and mean gradient,which means that it can better integrate featured information from all source images,avoid background noise and promote space clearness in the fusion image effectively. 展开更多
关键词 image fusion complex contourlet transform nonnegative matrix factorization
在线阅读 下载PDF
A novel trilinear decomposition algorithm:Three-dimension non-negative matrix factorization
17
作者 Hong Tao Gao Dong Mei Dai Tong Hua Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第4期495-498,共4页
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos... Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics. 展开更多
关键词 Three-dimension non-negative matrix factorization NMF3 ALGORITHM Data decomposition CHEMOMETRICS
在线阅读 下载PDF
Some Results on the Problem of Updating the Hyperbolic Matrix Factorizations
18
作者 Hanyu LI Hu YANG 《Journal of Mathematical Research with Applications》 CSCD 2013年第1期35-44,共10页
This paper considers the updating problem of the hyperbolic matrix factorizations. The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are first provided. Then, some differentia... This paper considers the updating problem of the hyperbolic matrix factorizations. The sufficient conditions for the existence of the updated hyperbolic matrix factorizations are first provided. Then, some differential inequalities and first order perturbation expansions for the updated hyperbolic factors are derived. These results generalize the corresponding ones for the updating problem of the classical QR factorization obtained by Jiguang SUN. 展开更多
关键词 hyperbolic matrix factorization hyperbolic QR factorization hyperbolic polarfactorization updating problem perturbation analysis.
原文传递
COMPUTING KARMARKAR'S PROJECTIONS QUICKLY BY USING MATRIX FACTORIZATION
19
作者 J.R.BIRGE AND TANG HENGYONG(Department of industrial and Operations Engineering,The University of Michigan,Ann ArborMI 48109,U.S.A.)(Department of Mathematics and Computer, Shenyang Teacher’s College, Shenyang 110031, China.) 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第3期355-360,共6页
In this paper we compute Karmarkar's projections quickly using MoorePenrose g-inverse and matrix factorization. So the computation work of (ATD2A)-1is decreased.
关键词 Linear programming Karmarkar's algorithm Karmarkar's projection MoorePenrose g-inverse matrix factorization.
在线阅读 下载PDF
Nonnegative matrix factorization with Log Gabor wavelets for image representation and classification
20
作者 Zheng Zhonglong Yang Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期738-745,共8页
Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially loc... Many problems in image representation and classification involve some form of dimensionality reduction. Nonnegative matrix factorization (NMF) is a recently proposed unsupervised procedure for learning spatially localized, partsbased subspace representation of objects. An improvement of the classical NMF by combining with Log-Gabor wavelets to enhance its part-based learning ability is presented. The new method with principal component analysis (PCA) and locally linear embedding (LIE) proposed recently in Science are compared. Finally, the new method to several real world datasets and achieve good performance in representation and classification is applied. 展开更多
关键词 non-negative matrix factorization (NMF) Log Gabor wavelets principal component analysis locally linearembedding (LLE)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部