To suppress the overshoots and undershoots in the envelope fitting for empirical mode decomposition (EMD), an alternative cubic spline interpolation method without overshooting and undershooting is proposed. On the ...To suppress the overshoots and undershoots in the envelope fitting for empirical mode decomposition (EMD), an alternative cubic spline interpolation method without overshooting and undershooting is proposed. On the basis of the derived slope constraints of knots of a non-overshooting and non-undershooting cubic interpolant, together with "not-a-knot" conditions the cubic spline interpolants are constructed by replacing the requirement for equal second order derivatives at every knot with Brodlie' s derivative formula. Analysis and simulation experiments show that this approach can effectively avoid generating new extrema, shifting or exaggerating the existing ones in a signal, and thus significantly improve the decomposition performance of EMD.展开更多
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i...The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.展开更多
基金the Ministerial Level Advanced Research Foundation (445030705QB0301)
文摘To suppress the overshoots and undershoots in the envelope fitting for empirical mode decomposition (EMD), an alternative cubic spline interpolation method without overshooting and undershooting is proposed. On the basis of the derived slope constraints of knots of a non-overshooting and non-undershooting cubic interpolant, together with "not-a-knot" conditions the cubic spline interpolants are constructed by replacing the requirement for equal second order derivatives at every knot with Brodlie' s derivative formula. Analysis and simulation experiments show that this approach can effectively avoid generating new extrema, shifting or exaggerating the existing ones in a signal, and thus significantly improve the decomposition performance of EMD.
基金the National Supercomputer Center in Tianjin for their patient assistance in providing the compilation environment.We thank the editor,Huajian Yao,for handling the manuscript and Mingming Li and another anonymous reviewer for their constructive comments.The research leading to these results has received funding from National Natural Science Foundation of China projects(Grant Nos.92355302 and 42121005)Taishan Scholar projects(Grant No.tspd20210305)others(Grant Nos.XDB0710000,L2324203,XK2023DXC001,LSKJ202204400,and ZR2021ZD09).
文摘The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms.