期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Oversample Reconstruction Based on a Strong Inter-Diagonal Matrix for an Optical Microscanning Thermal Microscope Imaging System
1
作者 Meijing Gao Ailing Tan +3 位作者 Jie Xu Weiqi Jin Zhenlong Zu Ming Yang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期65-73,共9页
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan... Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect. 展开更多
关键词 optical microscanning strong inter-diagonal matrix oversample reconstruction thermal microscope imaging system
在线阅读 下载PDF
On the Performance Analysis of One Tap Equalizers in Oversampled OFDM Systems
2
作者 Hassan Ali Fahad Khan 《International Journal of Communications, Network and System Sciences》 2018年第9期187-198,共12页
Oversampling is commonly encountered in orthogonal frequency division multiplexing (OFDM) systems to ease various performance characteristics. In this paper, we investigate the performance and complexity of one tap ze... Oversampling is commonly encountered in orthogonal frequency division multiplexing (OFDM) systems to ease various performance characteristics. In this paper, we investigate the performance and complexity of one tap zero-forcing (ZF) and minimum mean-square error (MMSE) equalizers in oversampled OFDM systems. Theoretical analysis and simulation results show that oversampling not only reduces the noise at equalizer output but also helps mitigate ill effects of spectral nulls. One tap equalizers therefore yield improved symbol-error-rate (SER) performance with the increase in oversampling rate, but at the expense of increased system bandwidth and modest complexity requirements. 展开更多
关键词 ONE TAP EQUALIZATION OVERSAMPLING Orthogonal Frequency Division Multiplexing Inverse Fast Fourier Transform
在线阅读 下载PDF
Neighbor Displacement-Based Enhanced Synthetic Oversampling for Multiclass Imbalanced Data
3
作者 I Made Putrama Péter Martinek 《Computers, Materials & Continua》 2025年第6期5699-5727,共29页
Imbalanced multiclass datasets pose challenges for machine learning algorithms.They often contain minority classes that are important for accurate predictions.However,when the data is sparsely distributed and overlaps... Imbalanced multiclass datasets pose challenges for machine learning algorithms.They often contain minority classes that are important for accurate predictions.However,when the data is sparsely distributed and overlaps with data points fromother classes,it introduces noise.As a result,existing resamplingmethods may fail to preserve the original data patterns,further disrupting data quality and reducingmodel performance.This paper introduces Neighbor Displacement-based Enhanced Synthetic Oversampling(NDESO),a hybridmethod that integrates a data displacement strategy with a resampling technique to achieve data balance.It begins by computing the average distance of noisy data points to their neighbors and adjusting their positions toward the center before applying random oversampling.Extensive evaluations compare 14 alternatives on nine classifiers across synthetic and 20 real-world datasetswith varying imbalance ratios.This evaluation was structured into two distinct test groups.First,the effects of k-neighbor variations and distance metrics are evaluated,followed by a comparison of resampled data distributions against alternatives,and finally,determining the most suitable oversampling technique for data balancing.Second,the overall performance of the NDESO algorithm was assessed,focusing on G-mean and statistical significance.The results demonstrate that our method is robust to a wide range of variations in these parameters and the overall performance achieves an average G-mean score of 0.90,which is among the highest.Additionally,it attains the lowest mean rank of 2.88,indicating statistically significant improvements over existing approaches.This advantage underscores its potential for effectively handling data imbalance in practical scenarios. 展开更多
关键词 NEIGHBOR DISPLACEMENT SYNTHETIC OVERSAMPLING MULTICLASS imbalanced data
在线阅读 下载PDF
Diagnostic Method for Load Deviation in Ultra-Supercritical Units Based on MLNaNBDOS
4
作者 Mingzhu Tang YujieHuang +1 位作者 Dongxu Ji Hao Yu 《Frontiers in Heat and Mass Transfer》 2025年第1期95-129,共35页
Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispat... Load deviations between the output of ultra-supercritical(USC)coal-fired power units and automatic generation control(AGC)commands can adversely affect the safe and stable operation of these units and grid load dispatching.Data-driven diagnostic methods often fail to account for the imbalanced distribution of data samples,leading to reduced classification performance in diagnosing load deviations in USC units.To address the class imbalance issue in USC load deviation datasets,this study proposes a diagnostic method based on the multi-label natural neighbor boundary oversampling technique(MLNaNBDOS).The method is articulated in three phases.Initially,the traditional binary oversampling strategy is improved by constructing a binary multi-label relationship for the load deviations in coal-fired units.Subsequently,an adaptive adjustment of the oversampling factor is implemented to determine the oversampling weight for each sample class.Finally,the generation of new instances is refined by dynamically evaluating the similarity between new cases and natural neighbors through a random factor,ensuring precise control over the instance generation process.In comparisons with nine benchmark methods across three imbalanced USC load deviation datasets,the proposed method demonstrates superior performance on several key evaluation metrics,including Micro-F1,Micro-G-mean,and Hamming Loss,with average values of 0.8497,0.9150,and 0.1503,respectively.These results substantiate the effectiveness of the proposed method in accurately diagnosing the sources of load deviations in USC units. 展开更多
关键词 Ultra-supercritical units load deviation multi-label learning class imbalance data oversampling
在线阅读 下载PDF
Oversampling Technology and Its Applications in Biomedical Signal Detection
5
作者 Xinyu Yang 《Journal of Clinical and Nursing Research》 2025年第6期202-207,共6页
This paper deeply explores oversampling technology and its applications in biomedical signal detection.It first expounds on the significance of oversampling technology in biomedical signal detection,and then analyzes ... This paper deeply explores oversampling technology and its applications in biomedical signal detection.It first expounds on the significance of oversampling technology in biomedical signal detection,and then analyzes the application strategies of oversampling technology in this field.On this basis,it details the specific applications of oversampling technology in electrophysiological signal detection,biomedical imaging signal processing,and other biomedical signal detections,and verifies its effectiveness through practical case analysis,aiming to provide certain references for relevant researchers. 展开更多
关键词 Oversampling technology Biomedical signal detection Application strategies
在线阅读 下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:4
6
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique Predictive modeling Surgical outcomes
暂未订购
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data 被引量:2
7
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
在线阅读 下载PDF
Risk assessment of rockburst using SMOTE oversampling and integration algorithms under GBDT framework 被引量:2
8
作者 WANG Jia-chuang DONG Long-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2891-2915,共25页
Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is graduall... Rockburst is a common geological disaster in underground engineering,which seriously threatens the safety of personnel,equipment and property.Utilizing machine learning models to evaluate risk of rockburst is gradually becoming a trend.In this study,the integrated algorithms under Gradient Boosting Decision Tree(GBDT)framework were used to evaluate and classify rockburst intensity.First,a total of 301 rock burst data samples were obtained from a case database,and the data were preprocessed using synthetic minority over-sampling technique(SMOTE).Then,the rockburst evaluation models including GBDT,eXtreme Gradient Boosting(XGBoost),Light Gradient Boosting Machine(LightGBM),and Categorical Features Gradient Boosting(CatBoost)were established,and the optimal hyperparameters of the models were obtained through random search grid and five-fold cross-validation.Afterwards,use the optimal hyperparameter configuration to fit the evaluation models,and analyze these models using test set.In order to evaluate the performance,metrics including accuracy,precision,recall,and F1-score were selected to analyze and compare with other machine learning models.Finally,the trained models were used to conduct rock burst risk assessment on rock samples from a mine in Shanxi Province,China,and providing theoretical guidance for the mine's safe production work.The models under the GBDT framework perform well in the evaluation of rockburst levels,and the proposed methods can provide a reliable reference for rockburst risk level analysis and safety management. 展开更多
关键词 rockburst evaluation SMOTE oversampling random search grid K-fold cross-validation confusion matrix
在线阅读 下载PDF
Predictive modeling for post operative delirium in elderly 被引量:1
9
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy Predictive model Synthetic minority oversampling technique
暂未订购
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
10
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
在线阅读 下载PDF
Postoperative delirium:A tragedy for elderly cancer patients
11
作者 Oguzhan Arun Funda Arun 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3765-3770,共6页
In this editorial,we comment on the article by Hu et al entitled“Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique”.We wan... In this editorial,we comment on the article by Hu et al entitled“Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique”.We wanted to draw attention to the general features of postoperative delirium(POD)as well as the areas where there are uncertainties and contradictions.POD can be defined as acute neurocognitive dysfunction that occurs in the first week after surgery.It is a severe postoperative complication,especially for elderly oncology patients.Although the underlying pathophysiological mechanism is not fully understood,various neuroinflammatory mechanisms and neurotransmitters are thought to be involved.Various assessment scales and diagnostic methods have been proposed for the early diagnosis of POD.As delirium is considered a preventable clinical entity in about half of the cases,various early prediction models developed with the support of machine learning have recently become a hot scientific topic.Unfortunately,a model with high sensitivity and specificity for the prediction of POD has not yet been reported.This situation reveals that all health personnel who provide health care services to elderly patients should approach patients with a high level of awareness in the perioperative period regarding POD. 展开更多
关键词 DELIRIUM ANESTHESIA Neurocognitive dysfunction Postoperative cognitive dysfunction Prevention Risk management Synthetic minority oversampling technique Postoperative delirium Elderly patients Abdominal cancer
暂未订购
针对非平衡警情数据改进的K-Means-Boosting-BP模型 被引量:4
12
作者 李卫红 童昊昕 《中国图象图形学报》 CSCD 北大核心 2017年第9期1314-1324,共11页
目的掌握警情的时空分布规律,通过机器学习算法建立警情时空预测模型,制定科学的警务防控方案,有效抑制犯罪的发生,是犯罪地理研究的重点。已有研究表明,警情时空分布多集中在中心城区或居民密集区,在时空上属于非平衡数据,这种数据的... 目的掌握警情的时空分布规律,通过机器学习算法建立警情时空预测模型,制定科学的警务防控方案,有效抑制犯罪的发生,是犯罪地理研究的重点。已有研究表明,警情时空分布多集中在中心城区或居民密集区,在时空上属于非平衡数据,这种数据的非平衡性通常导致在该数据上训练的模型成为弱学习器,预测精度较低。为解决这种非平衡数据的回归问题,提出一种基于KMeans均值聚类的Boosting算法。方法该算法以Boosting集成学习算法为基础,应用GA-BP神经网络生成基分类器,借助KMeans均值聚类算法进行基分类器的集成,从而实现将弱学习器提升为强学习器的目标。结果与常用的解决非平衡数据回归问题的Synthetic Minority Oversampling Technique Boosting算法,简称SMOTEBoosting算法相比,该算法具有两方面的优势:1)在降低非平衡数据中少数类均方误差的同时也降低了数据的整体均方误差,SMOTEBoosting算法的整体均方误差为2.14E-04,KMeans-Boosting算法的整体均方误差达到9.85E-05;2)更好地平衡了少数类样本识别的准确率和召回率,KMeans-Boosting算法的召回率约等于52%,SMOTEBoosting算法的召回率约等于91%;但KMeans-Boosting算法的准确率等于85%,远高于SMOTEBoosting算法的19%。结论 KMeans-Boosting算法能够显著的降低非平衡数据的整体均方误差,提高少数类样本识别的准确率和召回率,是一种有效地解决非平衡数据回归问题和分类问题的算法,可以推广至其他需要处理非平衡数据的领域中。 展开更多
关键词 非平衡数据 Synthetic MINORITY OVERSAMPLING Technique算法 BOOSTING算法 KMeans聚类算法 警情时空预测
原文传递
片上DAC在ATE上的测试 被引量:1
13
作者 熊剑 《实验科学与技术》 2005年第2期9-11,共3页
描述IC量产测试中的一些实际问题,并针对片上DAC动态参数的测试,提出一种新颖的、节约成本的、行之有效的方案。该方案是根据ATE本身架构的特点以及DSP器件的成熟应用而提出的。还着力阐述了DAC测试中的一些理论和方法,如相关采样、过... 描述IC量产测试中的一些实际问题,并针对片上DAC动态参数的测试,提出一种新颖的、节约成本的、行之有效的方案。该方案是根据ATE本身架构的特点以及DSP器件的成熟应用而提出的。还着力阐述了DAC测试中的一些理论和方法,如相关采样、过采样等。 展开更多
关键词 ATE DAC ADC COHERENT Sampling OVERSAMPLING
在线阅读 下载PDF
Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning 被引量:33
14
作者 Shaokang Hou Yaoru Liu Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期123-143,共21页
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are g... Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed. 展开更多
关键词 Tunnel boring machine(TBM)operation data Rock mass classification Stacking ensemble learning Sample imbalance Synthetic minority oversampling technique(SMOTE)
在线阅读 下载PDF
4K-DMDNet:diffraction model-driven network for 4K computer-generated holography 被引量:17
15
作者 Kexuan Liu Jiachen Wu +1 位作者 Zehao He Liangcai Cao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期17-29,共13页
Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training dataset... Deep learning offers a novel opportunity to achieve both high-quality and high-speed computer-generated holography(CGH).Current data-driven deep learning algorithms face the challenge that the labeled training datasets limit the training performance and generalization.The model-driven deep learning introduces the diffraction model into the neural network.It eliminates the need for the labeled training dataset and has been extensively applied to hologram generation.However,the existing model-driven deep learning algorithms face the problem of insufficient constraints.In this study,we propose a model-driven neural network capable of high-fidelity 4K computer-generated hologram generation,called 4K Diffraction Model-driven Network(4K-DMDNet).The constraint of the reconstructed images in the frequency domain is strengthened.And a network structure that combines the residual method and sub-pixel convolution method is built,which effectively enhances the fitting ability of the network for inverse problems.The generalization of the 4K-DMDNet is demonstrated with binary,grayscale and 3D images.High-quality full-color optical reconstructions of the 4K holograms have been achieved at the wavelengths of 450 nm,520 nm,and 638 nm. 展开更多
关键词 computer-generated holography deep learning model-driven neural network sub-pixel convolution OVERSAMPLING
在线阅读 下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
16
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
在线阅读 下载PDF
ISAR imaging based on improved phase retrieval algorithm 被引量:5
17
作者 SHI Hongyin XIA Saixue TIAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期278-285,共8页
Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retr... Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retrieval is proposed,which can provide a high-resolution and focused map of the spatial distribution of scatterers on the target. According to theoretical derivation, the modulus of raw data from the maneuvering target is not affected by radial motion components for ISAR imaging system, so the phase retrieval algorithm can be used for ISAR imaging problems. However, the traditional phase retrieval algorithm will be not applicable to ISAR imaging under the condition of random noise. To solve this problem, an algorithm is put forward based on the range Doppler(RD) algorithm and oversampling smoothness(OSS) phase retrieval algorithm. The algorithm captures the target information in order to reduce the influence of the random phase on ISAR echoes, and then applies OSS for focusing imaging based on prior information of the RD algorithm. The simulated results demonstrate the validity of this algorithm, which cannot only obtain high resolution imaging for high speed maneuvering targets under the condition of random noise, but also substantially improve the success rate of the phase retrieval algorithm. 展开更多
关键词 inverse synthetic aperture radar(ISAR) maneuvering target autofocus imaging phase retrieval oversampling smoothness(OSS)
在线阅读 下载PDF
An 18-bit sigma–delta switched-capacitor modulator using 4-order single-loop CIFB architecture 被引量:1
18
作者 Guiping Cao Ning Dong 《Journal of Semiconductors》 EI CAS CSCD 2020年第6期62-70,共9页
Oversampling sigma–delta(Σ–Δ)analog-to-digital converters(ADCs)are currently one of the most widely used architectures for high-resolution ADCs.The rapid development of integrated circuit manufacturing processes h... Oversampling sigma–delta(Σ–Δ)analog-to-digital converters(ADCs)are currently one of the most widely used architectures for high-resolution ADCs.The rapid development of integrated circuit manufacturing processes has allowed the realization of a high resolution in exchange for speed.Structurally,theΣ–ΔADC is divided into two parts:a front-end analog modulator and a back-end digital filter.The performance of the front-end analog modulator has a marked influence on the entireΣ–ΔADC system.In this paper,a 4-order single-loop switched-capacitor modulator with a CIFB(cascade-of-integrators feed-back)structure is proposed.Based on the chosen modulator architecture,the ASIC circuit is implemented using a chartered 0.35μm CMOS process with a chip area of 1.72×0.75 mm^2.The chip operates with a 3.3-V power supply and a power dissipation of 22 mW.According to the results,the performance of the designed modulator has been improved compared with a mature industrial chip and the effective number of bits(ENOB)was almost 18-bit. 展开更多
关键词 sigma–delta modulator OVERSAMPLING CIFB structure SWITCHED-CAPACITOR
在线阅读 下载PDF
An Imbalanced Dataset and Class Overlapping Classification Model for Big Data 被引量:1
19
作者 Mini Prince P.M.Joe Prathap 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1009-1024,共16页
Most modern technologies,such as social media,smart cities,and the internet of things(IoT),rely on big data.When big data is used in the real-world applications,two data challenges such as class overlap and class imba... Most modern technologies,such as social media,smart cities,and the internet of things(IoT),rely on big data.When big data is used in the real-world applications,two data challenges such as class overlap and class imbalance arises.When dealing with large datasets,most traditional classifiers are stuck in the local optimum problem.As a result,it’s necessary to look into new methods for dealing with large data collections.Several solutions have been proposed for overcoming this issue.The rapid growth of the available data threatens to limit the usefulness of many traditional methods.Methods such as oversampling and undersampling have shown great promises in addressing the issues of class imbalance.Among all of these techniques,Synthetic Minority Oversampling TechniquE(SMOTE)has produced the best results by generating synthetic samples for the minority class in creating a balanced dataset.The issue is that their practical applicability is restricted to problems involving tens of thousands or lower instances of each.In this paper,we have proposed a parallel mode method using SMOTE and MapReduce strategy,this distributes the operation of the algorithm among a group of computational nodes for addressing the aforementioned problem.Our proposed solution has been divided into three stages.Thefirst stage involves the process of splitting the data into different blocks using a mapping function,followed by a pre-processing step for each mapping block that employs a hybrid SMOTE algo-rithm for solving the class imbalanced problem.On each map block,a decision tree model would be constructed.Finally,the decision tree blocks would be com-bined for creating a classification model.We have used numerous datasets with up to 4 million instances in our experiments for testing the proposed scheme’s cap-abilities.As a result,the Hybrid SMOTE appears to have good scalability within the framework proposed,and it also cuts down the processing time. 展开更多
关键词 Imbalanced dataset class overlapping SMOTE MAPREDUCE parallel programming OVERSAMPLING
在线阅读 下载PDF
Detecting Ethereum Ponzi Schemes Through Opcode Context Analysis and Oversampling-Based AdaBoost Algorithm 被引量:1
20
作者 Mengxiao Wang Jing Huang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1023-1042,共20页
Due to the anonymity of blockchain,frequent security incidents and attacks occur through it,among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses.Machine learningbase... Due to the anonymity of blockchain,frequent security incidents and attacks occur through it,among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses.Machine learningbased methods are believed to be promising for detecting ethereum Ponzi schemes.However,there are still some flaws in current research,e.g.,insufficient feature extraction of Ponzi scheme smart contracts,without considering class imbalance.In addition,there is room for improvement in detection precision.Aiming at the above problems,this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis and adaptive boosting(AdaBoost)algorithm.Firstly,this paper uses the n-gram algorithm to extract more comprehensive contract opcode features and combine them with contract account features,which helps to improve the feature extraction effect.Meanwhile,adaptive synthetic sampling(ADASYN)is introduced to deal with class imbalanced data,and integrated with the Adaboost classifier.Finally,this paper uses the improved AdaBoost classifier for the identification of Ponzi scheme contracts.Experimentally,this paper tests our model in real-world smart contracts and compares it with representative methods in the aspect of F1-score and precision.Moreover,this article compares and discusses the state of art methods with our method in four aspects:data acquisition,data preprocessing,feature extraction,and classifier design.Both experiment and discussion validate the effectiveness of our model. 展开更多
关键词 Blockchain smart Ponzi scheme N-GRAM OVERSAMPLING ensemble learning
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部