The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on pet...The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on petroleum accumulation. (1) The overpressured fluid flow has enhanced the maturation of shallow-buried source rocks, which has caused the source rocks that would have remained immature under the conduction background to be mature for hydrocarbon generation. As a result, the overpressured fluid flow has increased the volume and interval of mature source rocks. (2) The overpressured fluid flow has strong extraction effects on the immature or low-mature source rocks in the shallow parts. This has increased, to some extent, the expulsion efficiency of the source rocks. More importantly, the extraction effects have strongly limited the effectiveness of biomarker parameters from oil and condensate in reflecting the source and maturity of the oil and gas. (3) The flow has caused the sandstones in the shallow parts to get into the late diagenesis stage, and significantly reduced the porosity and permeability of the sandstones. This study confirms that even in sedimentary basins in which no topography-driven groundwater flow systems have ever developed, the cross-formation migration of overpressured fluids and the resultant energy conduction and material exchange can significantly affect the thermal regime, source rock maturation and sandstone diagenesis. As a result, the effects of overpressured fluid flow must be taken into account in analyzing the mechanism of petroleum accumulation.展开更多
The characteristics, origin and injection history of the Dongfang gas field, the largest gas field found in the Yinggehai basin, are studied by integrated geological, geothermal and geochemical data. The gas field sho...The characteristics, origin and injection history of the Dongfang gas field, the largest gas field found in the Yinggehai basin, are studied by integrated geological, geothermal and geochemical data. The gas field shows considerable variation in hydrocarbon gas, nitrogen and carbon dioxide content, aud has been filled by at least four stage fluids. A strong thermal anomaIy caused by hydrothermal fluid flows occurs in the gas field, as evidenced rrom drill-stem test and fluid iuclusion homogenization temperatures, rock-eval tmax,vitrinite reflectance as well as clay-mineral transformation profiles. Such a thermal anomaly suggests focused, rapid flow of deeply-sourced hydrothermal rluids. The inter-reservoir heterogeneities, the strong migotion rractionation related to abrupt changes in pressure and temperature and tbe short-lived, transient nature of the thermal effect of fluid flow are evidences of episodic rluid injections from the overpressured systems into the reservoirs.展开更多
In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allo...In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allow to con- clude, that SCB (mainly its deep-water part), as well as a number of other basins of the world with overpressures, is characterized by retarda- tion of processes cracking of kerogen and oil, and also reaction of transformation of clay minerals. Periodic intensification of these pro- cesses can provoke development of diapirs and mud volcanoes, which are the centers of pulse unloading of a hydrocarbon products from sys- tem. The conclusion about high prospects of revealing of hydrocarbon accumulations in deep buried deposits in overpressured basins is made.展开更多
Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements...Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements in the carbonate cemented zones indicate that:(1) carbonate cements are composed dominantly of ferrocalcite,ferroan dolomite,and ankerite;(2) carbonate cements are formed under a high temperature circumstance in the subsurface,and organic fluid migration has an important effect on the formation of them;and(3) carbon and oxygen ions in the carbonate cements migrate from the underlying overpressured system.This suggests that the occurrence of carbonate cemented zones in this region results from multiple phases of organic fluid expulsion out of the overpressure compartment through geological time.This study provides a plausible mechanism of the formation of carbonate cemented zones adjacent to the top overpressured surface in the clastic sedimentary basins,and has an important implication for understanding the internal correlation between the formation of carbonate cemented zones adjacent to top overpressured surface and geofluids expulsion out of overpressured system.展开更多
The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) ...The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) and the temperature is as high as 143°C (geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type Ⅱ2-Ⅲ kero- gens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C2 ranging from -30.76%o to -37.52%o and δ13C2 ranging from -25.02%o to -25.62%o. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to under- compaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that (1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas; (2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and (3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.展开更多
Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads ...Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.展开更多
The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personn...The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC.展开更多
Overpressure prediction for exploratory drilling has become robust in most basins with increasing well control,high-quality seismic datasets,and proactive real-time overpressure monitoring while drilling.However,accur...Overpressure prediction for exploratory drilling has become robust in most basins with increasing well control,high-quality seismic datasets,and proactive real-time overpressure monitoring while drilling.However,accurate overpressure prediction remains challenging in offshore Northwest Borneo despite several decades of drilling experience.This paper focuses on two exploration wells drilled by Brunei Shell Petroleum 40 years apart that faced similar challenges with overpressure prediction and well control.An integrated lookback study is attempted using seismic and well-log data to explore the causes of the unsatisfactory Pore Pressure Prediction(PPP)outcome in pre-drill and real-time operation settings for thesewells.Our study indicates that the misprediction of overpressures is due to real differences in shale pressure(basis of pre-drill work and monitoring)and sand pressure(source of drill kick and well control chal-lenges)due to large-scale vertical leak or expulsion of deep-seated fluids into pre-compacted normally pressured overlying sediments in several regions through a mix of shear and tensile failure mechanisms.Such migrated fluids inflate the sand pressure in the normally compacted shallower sequences with the shale pressure remaining low.A predictive framework for upward fluid expulsion was attempted but found impracticable due to complex spatial and temporal variations in the horizontal stress field responsible for such leakage.As such,it is proposed that these migratory overpressures are essentially'unpredictable'from conventional PPP workflows viewed in the broad bucket of compaction disequi-librium(undercompaction)and fluid expansion(unloading)mechanisms.Further study is recommended to understand if such migrated overpressures in the sand can produce a discernible and predictable geophysical or petrophysical signature in the abutting normally compacted shales.The study highlights the possibility of large lateral variability in the sand overpressure within the same stratigraphic unit in regions with complex tectonostratigraphic evolution like Northwest Borneo.展开更多
With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has b...With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.展开更多
Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of t...Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety.展开更多
To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study ana...To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.展开更多
It is of great significance for deep oil and gas exploration to understand the origin and evolution behind overpressure.Overpressure occurs in the deep Shahezi Formation of Xujiaweizi fault depression.However,due to l...It is of great significance for deep oil and gas exploration to understand the origin and evolution behind overpressure.Overpressure occurs in the deep Shahezi Formation of Xujiaweizi fault depression.However,due to limited degree of exploration,there are some problems in the study area,such as unclear understanding of the origin of overpressure and the vague investigation of overpressure evolution.To clarify the impact of overpressure on oil and gas migration and accumulation in the study area,this study focuses on the research of the origin and evolution of overpressure in the Shahezi Formation of the study area,utilizing single well logging parameters and combining methods such as microthermometry of fluid inclusions,laser Raman spectrum,and basin simulation.The results show that the overpressure of the Shahezi Formation in Xujiaweizi fault depression is primarily generated by hydrocarbon generation pressurization,and the evolution of overpressure is closely related to hydrocarbon generation.The development of overpressure can be divided into two evolutionary stages:early hydrocarbon generation pressurization and late uplift release,with slight variations in different regions.Tight glutenite gas reservoirs in the Shahezi Formation are characterized by continuous charging.The overall charging period ranges from the late Denglouku to the early Mingshui(110-67 Ma ago).There is an obvious paleo-overpressure during the gas reservoir formation period.The gas generation period of source rocks occurred approximately 125-60 Ma ago,and the main gas generation period(112-67 Ma ago)highly coincides with the period of natural gas charging.The anomalously high pressure during the accumulation period is considered the significant driving force for natural gas charging.In addition,the sustained effect of overpressure provides better conditions for the preservation of tight gas reservoirs within the source.The results of the study are of guiding significance for the in-depth exploration and development of deep tight sandstone gas in the Shahezi Formation of Xujiaweizi fault depression.展开更多
In overpressure reservoirs,natural gas often coexists in a three-phase mixed form of continuous free state,dispersed free state and water-saturated dissolved state.However,the latter two have not received sufficient a...In overpressure reservoirs,natural gas often coexists in a three-phase mixed form of continuous free state,dispersed free state and water-saturated dissolved state.However,the latter two have not received sufficient attention.In response to this situation,based on detailed characterization of typical overpressure dissolved gas in the Yinggehai-Qiongdongnan basin and the experiment results of natural gas dissolution with high-temperature and overpressure,the concept of“overpressure-dissolved gas”was proposed and its basic features,formation conditions and resource potential were summarized.It refers to the natural gas present in the gas-water transitional zone and the saturated dissolved gas zone within the overpressure reservoirs.The formation of overpressure-dissolved gas requires two basic conditions:the pressure coefficient typically greater than 1.5,and a relatively high gas saturation in the reservoir(10%-35%).Overpressure-dissolved gas exists in the strata from shallow to deep with a multi-stage superimposed pattern;there are at least four combination types:overpressure-dissolved gas with multiple gas caps,overpressure-dissolved gas with single gas cap,gas-bearing water layer without gas cap,and dissolved gas-bearing water layer without gas cap.The basic geological elements required for the formation of overpressure-dissolved gas include the gas source,reservoir,cap rock,gas-water transitional zone and overpressure body.The conditions of gas source,reservoir and cap rock determine the scale of the overpressure-dissolved gas zone.High temperature,high pressure and low-permeability reservoirs control the solubility of natural gas and the thickness of the gas-water transitional zone.The physical properties of sandstone determine the combination types of overpressure-dissolved gas.Changes in pressure control the transformation of different existing states of overpressure-dissolved gas.The overpressure-dissolved gas in the Yinggehai-Qiongdongnan Basin has considerable huge resource potential.Once breakthrough is achieved in this area,it will usher in a new era of natural gas exploration in the overpressured basin.展开更多
The Mesozoic volcanic rocks of the Bodong Low Uplift in the Bohai Bay Basin have been studied and explored for years.In 2024,the LK7-A well drilled in this region tested high-yield oil and gas flows from volcanic weat...The Mesozoic volcanic rocks of the Bodong Low Uplift in the Bohai Bay Basin have been studied and explored for years.In 2024,the LK7-A well drilled in this region tested high-yield oil and gas flows from volcanic weathered crust.These volcanic rocks need to be further investigated in terms of distribution patterns,conditions for forming high-quality reservoirs,and main factors controlling hydrocarbon accumulation.Based on the logging,geochemical and mineralogical data from wells newly drilled to the Mesozoic volcanic rocks in the basin,and high-resolution 3D seismic data,a comprehensive study was conducted for this area.The research findings are as follows.First,the volcanic rocks in the LK7-A structure are adakites with a large source area depth,and the deep and large faults have provided channels for the emplacement of intermediate-acidic volcanic rocks.Second,volcanic rock reservoirs are mainly distributed in tectonic breccias and intermediate-acidic lavas,and they are dominantly fractured-porous reservoirs,with high-porosity and low-permeability or medium-porosity and low-permeability.Third,the dominant lithologies/lithofacies is the basic condition for forming large-scale volcanic rock reservoirs.Structural fractures and late-stage strong weathering are crucial mechanisms for the formation scale of reservoirs in the Mesozoic volcanic rocks.Fourth,the Bodong Low Uplift exhibits strong hydrocarbon charging by two sags and overpressure mudstone capping,which are favorable for forming high-abundance oil and gas reservoirs.The Mesozoic volcanic buried hills in the study area reflect good trap geometry,providing favorable conditions for large-scale reservoir formation,and also excellent migration and accumulation conditions.Areas with long-term exposure of intermediate-acidic volcanic rocks,particularly in active structural regions,are the key targets for future exploration.展开更多
This study examined the geochemical features of pore water in the diapiric area of the Yinggehai Basin, northwestern South China Sea, and illuminated the origin and evolution of basin fluids. Pore water with low salin...This study examined the geochemical features of pore water in the diapiric area of the Yinggehai Basin, northwestern South China Sea, and illuminated the origin and evolution of basin fluids. Pore water with low salinity occurs in marine sediments in the diapiric area even without meteoric water infiltration. The presence of low-salinity water within deep, overpressured compartments is assumed to be due to smectite-illite transformation. Howerver, in shallow portions(less than 2 000 m) of diapiric areas with normal pressure, pore water has a much wider variation and much lower salinity than that in the overpressured intervals. Its total dissolved solid(TDS) content is ~5 336 to 35 939 mg/L. Moreover, smectite and chlorite content sharply decreases as kaolinite and illite content increase in shallower intervals. The geochemical variation of pore water in diapiric structures indicates the expulsion of low-salinity, overpressured fluids along vertical faults. Strong injection of hot fluids from deep overpressured sediments results in rapid clay mineral transformation in shallow reservoirs. Consequently, fluid mixing due to fluid expulsion from deeper overpressured deposits leads to variation in salinity and ionic composition as well as some diagenetic reactions. This includes transformation of clay minerals caused by the higher temperatur of deeper hot fluids, e.g., the transfromation of smectite to illite and chlorite to kaolinite. Therefore, variations in salinity and ionic compositions in various pressured systems provide a clue to flow pathways and associated diagenetic reactions.展开更多
Because single trigger system is unreliable for shock wave overpressure test, this paper presents a multi-trigger overpressure test system. The large memory capacity is divided into parts to achieve data acquisition a...Because single trigger system is unreliable for shock wave overpressure test, this paper presents a multi-trigger overpressure test system. The large memory capacity is divided into parts to achieve data acquisition and storage with multiple triggers. Compared with conventional single-shot storage test system, this system can prevent false trigger and improve reliability of the test. By using explosion time to extract valid signal segments, it improves the efficiency of data recovery. These characteristics of the system contribute to multi-point test. After the dynamic characteristics of the system are calibrated, the valid data can be obtained in explosion experiments. The results show that the multi-trigger test system has higher reliability than single trigger test system.展开更多
The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. Firs...The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.展开更多
The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pr...The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.展开更多
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbon...The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi- ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu- lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow.展开更多
Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research i...Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.展开更多
基金This research was supported by the National Natural Science Foundation of China(grants 401 25008 and 40238059).
文摘The Yinggehai Basin is a strongly overpressured Cenozoic basin developed in the northern continental shelf of the South China Sea. The flow of overpressured fluids in this basin has given rise to strong effects on petroleum accumulation. (1) The overpressured fluid flow has enhanced the maturation of shallow-buried source rocks, which has caused the source rocks that would have remained immature under the conduction background to be mature for hydrocarbon generation. As a result, the overpressured fluid flow has increased the volume and interval of mature source rocks. (2) The overpressured fluid flow has strong extraction effects on the immature or low-mature source rocks in the shallow parts. This has increased, to some extent, the expulsion efficiency of the source rocks. More importantly, the extraction effects have strongly limited the effectiveness of biomarker parameters from oil and condensate in reflecting the source and maturity of the oil and gas. (3) The flow has caused the sandstones in the shallow parts to get into the late diagenesis stage, and significantly reduced the porosity and permeability of the sandstones. This study confirms that even in sedimentary basins in which no topography-driven groundwater flow systems have ever developed, the cross-formation migration of overpressured fluids and the resultant energy conduction and material exchange can significantly affect the thermal regime, source rock maturation and sandstone diagenesis. As a result, the effects of overpressured fluid flow must be taken into account in analyzing the mechanism of petroleum accumulation.
文摘The characteristics, origin and injection history of the Dongfang gas field, the largest gas field found in the Yinggehai basin, are studied by integrated geological, geothermal and geochemical data. The gas field shows considerable variation in hydrocarbon gas, nitrogen and carbon dioxide content, aud has been filled by at least four stage fluids. A strong thermal anomaIy caused by hydrothermal fluid flows occurs in the gas field, as evidenced rrom drill-stem test and fluid iuclusion homogenization temperatures, rock-eval tmax,vitrinite reflectance as well as clay-mineral transformation profiles. Such a thermal anomaly suggests focused, rapid flow of deeply-sourced hydrothermal rluids. The inter-reservoir heterogeneities, the strong migotion rractionation related to abrupt changes in pressure and temperature and tbe short-lived, transient nature of the thermal effect of fluid flow are evidences of episodic rluid injections from the overpressured systems into the reservoirs.
文摘In paper the role of excess pressures in cata- genic processes of the South-Caspian basin (SCB) is considered. The results of the carried out researches taking into account world ex- perience on the given problem allow to con- clude, that SCB (mainly its deep-water part), as well as a number of other basins of the world with overpressures, is characterized by retarda- tion of processes cracking of kerogen and oil, and also reaction of transformation of clay minerals. Periodic intensification of these pro- cesses can provoke development of diapirs and mud volcanoes, which are the centers of pulse unloading of a hydrocarbon products from sys- tem. The conclusion about high prospects of revealing of hydrocarbon accumulations in deep buried deposits in overpressured basins is made.
基金supported by the Important National Science & Technology Specific Projects (Grant No.2008ZX05001)Scientific Development Projects of Petrochina Company Limited (Grant No.2008B-0100)+2 种基金the Doctoral Education Program Fund of Ministry of Education,China (Grant No.20060491505)American Association of Petroleum Geologists Grants-in-Aid Foundation ProgramNational Natural Science Foundation of China (Grant Nos.40739904,40902039)
文摘Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements in the carbonate cemented zones indicate that:(1) carbonate cements are composed dominantly of ferrocalcite,ferroan dolomite,and ankerite;(2) carbonate cements are formed under a high temperature circumstance in the subsurface,and organic fluid migration has an important effect on the formation of them;and(3) carbon and oxygen ions in the carbonate cements migrate from the underlying overpressured system.This suggests that the occurrence of carbonate cemented zones in this region results from multiple phases of organic fluid expulsion out of the overpressure compartment through geological time.This study provides a plausible mechanism of the formation of carbonate cemented zones adjacent to the top overpressured surface in the clastic sedimentary basins,and has an important implication for understanding the internal correlation between the formation of carbonate cemented zones adjacent to top overpressured surface and geofluids expulsion out of overpressured system.
基金supported by National Science and Technology Major Project of China(Grant No.2011ZX05023-004)
文摘The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas res- ervoir in the Miocene Huangliu Formation is up to 54.6 MPa (pressure coefficient=l.91) and the temperature is as high as 143°C (geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type Ⅱ2-Ⅲ kero- gens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C2 ranging from -30.76%o to -37.52%o and δ13C2 ranging from -25.02%o to -25.62%o. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to under- compaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that (1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas; (2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and (3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52378401,52278504)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘Traffic engineering such as tunnels in various altitudinal gradient zone are at risk of accidental explosion,which can damage personnel and equipment.Accurate prediction of the distribution pattern of explosive loads and shock wave propagation process in semi-enclosed structures at various altitude environment is key research focus in the fields of explosion shock and fluid dynamics.The effect of altitude on the propagation of shock waves in tunnels was investigated by conducting explosion test and numerical simulation.Based on the experimental and numerical simulation results,a prediction model for the attenuation of the peak overpressure of tunnel shock waves at different altitudes was established.The results showed that the peak overpressure decreased at the same measurement points in the tunnel entrance under the high altitude condition.In contrast,an increase in altitude accelerated the propagation speed of the shock wave in the tunnel.The average error between the peak shock wave overpressure obtained using the overpressure prediction formula and the measured test data was less than15%,the average error between the propagation velocity of shock waves predicted values and the test data is less than 10%.The method can effectively predict the overpressure attenuation of blast wave in tunnel at various altitudes.
基金supported by the National Natural Science Foundation of China(Grant No.U2341269)。
文摘The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC.
文摘Overpressure prediction for exploratory drilling has become robust in most basins with increasing well control,high-quality seismic datasets,and proactive real-time overpressure monitoring while drilling.However,accurate overpressure prediction remains challenging in offshore Northwest Borneo despite several decades of drilling experience.This paper focuses on two exploration wells drilled by Brunei Shell Petroleum 40 years apart that faced similar challenges with overpressure prediction and well control.An integrated lookback study is attempted using seismic and well-log data to explore the causes of the unsatisfactory Pore Pressure Prediction(PPP)outcome in pre-drill and real-time operation settings for thesewells.Our study indicates that the misprediction of overpressures is due to real differences in shale pressure(basis of pre-drill work and monitoring)and sand pressure(source of drill kick and well control chal-lenges)due to large-scale vertical leak or expulsion of deep-seated fluids into pre-compacted normally pressured overlying sediments in several regions through a mix of shear and tensile failure mechanisms.Such migrated fluids inflate the sand pressure in the normally compacted shallower sequences with the shale pressure remaining low.A predictive framework for upward fluid expulsion was attempted but found impracticable due to complex spatial and temporal variations in the horizontal stress field responsible for such leakage.As such,it is proposed that these migratory overpressures are essentially'unpredictable'from conventional PPP workflows viewed in the broad bucket of compaction disequi-librium(undercompaction)and fluid expansion(unloading)mechanisms.Further study is recommended to understand if such migrated overpressures in the sand can produce a discernible and predictable geophysical or petrophysical signature in the abutting normally compacted shales.The study highlights the possibility of large lateral variability in the sand overpressure within the same stratigraphic unit in regions with complex tectonostratigraphic evolution like Northwest Borneo.
基金supported by the Dong-A University of the Republic of Korea research fund。
文摘With the increasing demand for secure infrastructure such as hydrogen refueling stations,chemical plants,and energy storage systems,the need for protective structures capable of withstanding close-in detonations has become more critical.Existing design guidelines for protective walls(e.g.,UFC 3-340-02)primarily address mid-and far-field explosions,providing limited insights into near-field effects.Considering the effect of slight slopes(<40°)on reducing maximum reflected overpressure is deemed negligible.This study investigated the effectiveness of a reinforced concrete(RC)modular protection system(MPS)incorpo rating a diagonally tapered wall in attenuating re flected overpressures from closein detonations.Full-scale field experiments using a 51.3 kg TNT charge,representing the explosion energy of a typical hydrogen vessel rupture,demonstrated that a wall with a 7°slope significantly outperformed a vertical wall of equivalent concrete volume in terms of blast resistance.Observed structural responses included cracking,horizontal shear failure,and overturning.Complementary simulations using a validated computational fluid dynamics(CFD)model showed that the tapered wall reduced peak overpressure by 30%-40%compared to an equivalent vertical wall.This result highlights the potential of minor geometric modifications to enhance blast resilience.The tapered design effectively redirects incident blast waves,reducing localized damage while also conserving material,thus preserving modular benefits such as ease of transport and reusability.These findings suggest that diagonally tapered RC-based MPSs can offer a practical and resilient solution for industrial and military applications subject to near-field or sequential blast threats.
基金supported by the National Natural Science Foundation of China(Project Approval Number:52404270)Postdoctoral Innovative Talent Support Program(BX20230427)+2 种基金Postdoctoral Surface Fund Grants(2023M743874)Research Start-up Fund of China University of Petroleum(Beijing)(2462023XKBH017)Fundamental Research Project Grant of China Academy of Safety Science and Technology(2023JBKY07)。
文摘Gas explosions are a frequent hazard in underground confined spaces in the process of urban development.Liquid sedimentary layers,commonly present in these environments,have not been sufficiently studied in terms of their impact on explosion dynamics.This study aims to investigate how gas-liquid two-phase environments in confined underground spaces affect the explosion characteristics of natural gas.To achieve this,experiments are conducted to examine the propagation of natural gas explosions in water and diesel layers,focusing on the influence of liquid properties and the liquid fullness degree(Lx)on explosion behavior.The results indicate that the presence of a liquid layer after the initial ignition stage significantly attenuates both the peak overpressure and the rise speed of pressure,in comparison to the natural gas conditions.During the subsequent explosive reaction,the evaporation and combustion of the diesel surface resulted in a distinct double-peak pressure rise profile in the diesel layer,with the second peak notably exceeding the first peak.Under conditions with a liquid sedimentary layer,the flame propagation velocities range from 6.53 to 34.1 m/s,while the overpressure peaks vary between 0.157 and 0.255 MPa.The explosion duration in both the water and diesel layer environments is approximately twice as long as that of the natural gas explosion,although the underlying mechanisms differ.In the diesel layer,the prolonged explosion time is attributed to the evaporation and combustion of the diesel,while in the water layer,the flame propagation velocity is significantly reduced.Under the experimental conditions,the maximum explosion energy reached 7.15×10~6J,corresponding to a TNT equivalent of 1.7.The peak overpressure surpassed the threshold for human fatality as defined by overpressure standards,posing a potential risk of damage to large steel-frame structures.The explosion shockwave in diesel layer conditions(L_(d)=0%,5%,7.5%,12.5%)and water layer(L_(w)=12.5%)conditions is observed to be sufficient to damage earthquake-resistant reinforced concrete.This study investigates the impact of sediment layer thickness and composition on gas explosions,and evaluates the associated explosion energy to assess human injuries and structural damage in underground environments.The findings of this study provide a scientific reference for urban underground safety.
基金funded by the National Natural Science Foundation of China(Grant No. 12302437)Jiangsu Provincial Natural Science Foundation (Grant No.SBK2023045424)。
文摘To explore the design criteria for composite charges and reveal the intrinsic relationship between the detonation wave propagation in composite charges and the overall energy distribution of shock waves,this study analyzes the propagation and interaction processes of detonation waves in composite charges with different structural dimensions and explosive combinations. It also investigates the spatial distribution characteristics of the resulting shock wave loads. Based on dimensional analysis theory, a theoretical analysis of the shock wave overpressure distribution in free air fields is conducted. Utilizing the derived dimensionless function relationships, the hydrocode AUTODYN is employed to investigate the effects of charge structure parameters and explosive combinations on the internal overdriven detonation phenomena and the distribution of shock wave loads. It is found that the overdriven detonation phenomenon in the inner layer of composite charges increases the strength of the axial detonation wave,thereby enhancing the intensity of the primary end wave formed upon refraction into the air, which affects the distribution characteristics of the shock wave overpressure. Research has shown that increasing the thickness ratio and detonation velocity ratio of composite charges is beneficial for exacerbating the phenomenon of overdriven detonation, improving the primary end wave intensity and axial overpressure. This gain effect gradually weakens with the propagation of shock waves. When overdriven detonation occurs inside the composite charge, the detonation pressure first increases and then decreases. The Mach reflection pressure of the composite charge with a larger aspect ratio is attenuated to a greater extent. In addition, as the aspect ratio of the composite charge increases, the shock wave energy gradually flows from the axial direction to the radial direction. Therefore, as the aspect ratio of the composite charge increases, the primary end wave intensity and axial overpressure gradually decrease.
基金supported by Innovative Research Group Project of the National Natural Science Foundation of China(Grant Nos.42072151,42272137 and 42372144)China National Petroleum Corporation(CNPC)Forward-looking Basic and Strategic Technology Research Project(Grant No.2021DJ0205)。
文摘It is of great significance for deep oil and gas exploration to understand the origin and evolution behind overpressure.Overpressure occurs in the deep Shahezi Formation of Xujiaweizi fault depression.However,due to limited degree of exploration,there are some problems in the study area,such as unclear understanding of the origin of overpressure and the vague investigation of overpressure evolution.To clarify the impact of overpressure on oil and gas migration and accumulation in the study area,this study focuses on the research of the origin and evolution of overpressure in the Shahezi Formation of the study area,utilizing single well logging parameters and combining methods such as microthermometry of fluid inclusions,laser Raman spectrum,and basin simulation.The results show that the overpressure of the Shahezi Formation in Xujiaweizi fault depression is primarily generated by hydrocarbon generation pressurization,and the evolution of overpressure is closely related to hydrocarbon generation.The development of overpressure can be divided into two evolutionary stages:early hydrocarbon generation pressurization and late uplift release,with slight variations in different regions.Tight glutenite gas reservoirs in the Shahezi Formation are characterized by continuous charging.The overall charging period ranges from the late Denglouku to the early Mingshui(110-67 Ma ago).There is an obvious paleo-overpressure during the gas reservoir formation period.The gas generation period of source rocks occurred approximately 125-60 Ma ago,and the main gas generation period(112-67 Ma ago)highly coincides with the period of natural gas charging.The anomalously high pressure during the accumulation period is considered the significant driving force for natural gas charging.In addition,the sustained effect of overpressure provides better conditions for the preservation of tight gas reservoirs within the source.The results of the study are of guiding significance for the in-depth exploration and development of deep tight sandstone gas in the Shahezi Formation of Xujiaweizi fault depression.
基金Supported by the Key Project of Science and Technology Strategic Consulting,Chinese Academy of Engineering(2025-HZ-30).
文摘In overpressure reservoirs,natural gas often coexists in a three-phase mixed form of continuous free state,dispersed free state and water-saturated dissolved state.However,the latter two have not received sufficient attention.In response to this situation,based on detailed characterization of typical overpressure dissolved gas in the Yinggehai-Qiongdongnan basin and the experiment results of natural gas dissolution with high-temperature and overpressure,the concept of“overpressure-dissolved gas”was proposed and its basic features,formation conditions and resource potential were summarized.It refers to the natural gas present in the gas-water transitional zone and the saturated dissolved gas zone within the overpressure reservoirs.The formation of overpressure-dissolved gas requires two basic conditions:the pressure coefficient typically greater than 1.5,and a relatively high gas saturation in the reservoir(10%-35%).Overpressure-dissolved gas exists in the strata from shallow to deep with a multi-stage superimposed pattern;there are at least four combination types:overpressure-dissolved gas with multiple gas caps,overpressure-dissolved gas with single gas cap,gas-bearing water layer without gas cap,and dissolved gas-bearing water layer without gas cap.The basic geological elements required for the formation of overpressure-dissolved gas include the gas source,reservoir,cap rock,gas-water transitional zone and overpressure body.The conditions of gas source,reservoir and cap rock determine the scale of the overpressure-dissolved gas zone.High temperature,high pressure and low-permeability reservoirs control the solubility of natural gas and the thickness of the gas-water transitional zone.The physical properties of sandstone determine the combination types of overpressure-dissolved gas.Changes in pressure control the transformation of different existing states of overpressure-dissolved gas.The overpressure-dissolved gas in the Yinggehai-Qiongdongnan Basin has considerable huge resource potential.Once breakthrough is achieved in this area,it will usher in a new era of natural gas exploration in the overpressured basin.
基金Supported by the the National Natural Science Foundation of China(U24B2017)。
文摘The Mesozoic volcanic rocks of the Bodong Low Uplift in the Bohai Bay Basin have been studied and explored for years.In 2024,the LK7-A well drilled in this region tested high-yield oil and gas flows from volcanic weathered crust.These volcanic rocks need to be further investigated in terms of distribution patterns,conditions for forming high-quality reservoirs,and main factors controlling hydrocarbon accumulation.Based on the logging,geochemical and mineralogical data from wells newly drilled to the Mesozoic volcanic rocks in the basin,and high-resolution 3D seismic data,a comprehensive study was conducted for this area.The research findings are as follows.First,the volcanic rocks in the LK7-A structure are adakites with a large source area depth,and the deep and large faults have provided channels for the emplacement of intermediate-acidic volcanic rocks.Second,volcanic rock reservoirs are mainly distributed in tectonic breccias and intermediate-acidic lavas,and they are dominantly fractured-porous reservoirs,with high-porosity and low-permeability or medium-porosity and low-permeability.Third,the dominant lithologies/lithofacies is the basic condition for forming large-scale volcanic rock reservoirs.Structural fractures and late-stage strong weathering are crucial mechanisms for the formation scale of reservoirs in the Mesozoic volcanic rocks.Fourth,the Bodong Low Uplift exhibits strong hydrocarbon charging by two sags and overpressure mudstone capping,which are favorable for forming high-abundance oil and gas reservoirs.The Mesozoic volcanic buried hills in the study area reflect good trap geometry,providing favorable conditions for large-scale reservoir formation,and also excellent migration and accumulation conditions.Areas with long-term exposure of intermediate-acidic volcanic rocks,particularly in active structural regions,are the key targets for future exploration.
基金the projects the National Natural Science Foundation of China (Nos. 91028009, 41476032 and 40806019)the Special Foundation for State Major Basic Research Program of China (No. 2011ZX05025-0020-020-03)
文摘This study examined the geochemical features of pore water in the diapiric area of the Yinggehai Basin, northwestern South China Sea, and illuminated the origin and evolution of basin fluids. Pore water with low salinity occurs in marine sediments in the diapiric area even without meteoric water infiltration. The presence of low-salinity water within deep, overpressured compartments is assumed to be due to smectite-illite transformation. Howerver, in shallow portions(less than 2 000 m) of diapiric areas with normal pressure, pore water has a much wider variation and much lower salinity than that in the overpressured intervals. Its total dissolved solid(TDS) content is ~5 336 to 35 939 mg/L. Moreover, smectite and chlorite content sharply decreases as kaolinite and illite content increase in shallower intervals. The geochemical variation of pore water in diapiric structures indicates the expulsion of low-salinity, overpressured fluids along vertical faults. Strong injection of hot fluids from deep overpressured sediments results in rapid clay mineral transformation in shallow reservoirs. Consequently, fluid mixing due to fluid expulsion from deeper overpressured deposits leads to variation in salinity and ionic composition as well as some diagenetic reactions. This includes transformation of clay minerals caused by the higher temperatur of deeper hot fluids, e.g., the transfromation of smectite to illite and chlorite to kaolinite. Therefore, variations in salinity and ionic compositions in various pressured systems provide a clue to flow pathways and associated diagenetic reactions.
文摘Because single trigger system is unreliable for shock wave overpressure test, this paper presents a multi-trigger overpressure test system. The large memory capacity is divided into parts to achieve data acquisition and storage with multiple triggers. Compared with conventional single-shot storage test system, this system can prevent false trigger and improve reliability of the test. By using explosion time to extract valid signal segments, it improves the efficiency of data recovery. These characteristics of the system contribute to multi-point test. After the dynamic characteristics of the system are calibrated, the valid data can be obtained in explosion experiments. The results show that the multi-trigger test system has higher reliability than single trigger test system.
基金Natural Science Foudation of Shanxi Province of China(No.2013011017-8)
文摘The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.
基金partially sponsored by Foundation of PLA Rocket Force
文摘The waveform of the explosion shock wave under free-field air explosion is an extremely complex problem.It is generally considered that the waveform consists of overpressure peak,positive pressure zone and negative pressure zone.Most of current practice usually considers only the positive pressure.Many empirical relations are available to predict overpressure peak,the positive pressure action time and pressure decay law.However,there are few models that can predict the whole waveform.The whole process of explosion shock wave overpressure,which was expressed as the product of the three factor functions of peak,attenuation and oscillation,was proposed in the present work.According to the principle of explosion similarity,the scaled parameters were introduced and the empirical formula was absorbed to form a mathematical model of shock wave overpressure.Parametric numerical simulations of free-field air explosions were conducted.By experimental verification of the AUTODYN numerical method and comparing the analytical and simulated curves,the model is proved to be accurate to calculate the shock wave overpressure under free-field air explosion.In addition,through the model the shock wave overpressure at different time and distance can be displayed in three dimensions.The model makes the time needed for theoretical calculation much less than that for numerical simulation.
基金supported by NSFC(41072069,40772061 and 40930423)State Basic Research Plan(2009CB421005)+1 种基金IRT (0755)111 Plan(B07011)
文摘The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi- ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu- lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow.
基金This work was supported by the Ghana National Petroleum Corporation(GNPC)through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),GhanaThe authors thank the Ghana National Petroleum Corporation(GNPC)for providing funding to support this work through the GNPC Professorial Chair in Mining Engineering at the University of Mines and Technology(UMaT),Ghana.
文摘Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp.