The author affiliation and the funding information in the Acknowledgement section of the online version of the original article was revised.One affiliation(the 8th affiliation)of the first author is added.The Acknowle...The author affiliation and the funding information in the Acknowledgement section of the online version of the original article was revised.One affiliation(the 8th affiliation)of the first author is added.The Acknowledgement section of the original article has been revised to:Acknowledgments:This research was funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)and supported by the Chey Institute for Advanced Studies“International Scholarship Exchange Fellowship for the academic year of 2024-2025”,Republic of Korea,and the National University of Mongolia.We would like to acknowledge the National University of Mongolia and Soumik Das from the Center for the Study of Regional Development,Jawaharlal Nehru University,New Delhi-110067,for his valuable assistance in preparing the geological maps.展开更多
Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple p...Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.展开更多
During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granul...During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granular flow have not yet been elucidated.To address this gap,physical flume tests and discrete element simulations are conducted considering a range of normalized deposition height h0/H from 0 to 1,where h0 and H represent the deposition height and obstacle height,respectively.An analytical model is modified to evaluate the flow velocity and flow depth after interacting with the retained materials,which further serve to calculate the peak impact force on the obstacle.Notably,the computed impact forces successfully predict the experimental results when a≥25°.In addition,the results indicate that a higher h0/H leads to a lower dynamic impact force,a greater landing distance L,and a larger landing coefficient Cr,where Cr is the ratio of slope-parallel component of landing velocity to flow velocity just before landing.Compared to the existing overflow model,the measured landing distance L is underestimated by up to 30%,and therefore it is insufficient for obstacle design when there is retained material.Moreover,the recommended Cr in current design practice is found to be nonconservative for estimating the landing velocity of geophysical flow.This study provides insightful scientific basis for designing obstacles with deposition.展开更多
A simplified integer overflow detection method based on path relaxation is described for avoiding buffer overflow triggered by integer overflow. When the integer overflow refers to the size of the buffer allocated dyn...A simplified integer overflow detection method based on path relaxation is described for avoiding buffer overflow triggered by integer overflow. When the integer overflow refers to the size of the buffer allocated dynamically, this kind of integer overflow is most likely to trigger buffer overflow. Based on this discovery, through lightly static program analysis, the solution traces the key variables referring to the size of a buffer allocated dynamically and it maintains the upper bound and lower bound of these variables. After the constraint information of these traced variables is inserted into the original program, this method tests the program with test cases through path relaxation, which means that it not only reports the errors revealed by the current runtime value of traced variables contained in the test case, but it also examines the errors possibly occurring under the same execution path with all the possible values of the traced variables. The effectiveness of this method is demonstrated in a case study. Compared with the traditional buffer overflow detection methods, this method reduces the burden of detection and improves efficiency.展开更多
Integer overflow vulnerability will cause buffer overflow. The research on the relationship between them will help us to detect integer overflow vulnerability. We present a dynamic analysis methods RICB (Run-time Int...Integer overflow vulnerability will cause buffer overflow. The research on the relationship between them will help us to detect integer overflow vulnerability. We present a dynamic analysis methods RICB (Run-time Integer Checking via Buffer overflow). Our approach includes decompile execute file to assembly language; debug the execute file step into and step out; locate the overflow points and checking buffer overflow caused by integer overflow. We have implemented our approach in three buffer overflow types: format string overflow, stack overflow and heap overflow. Experiments results show that our approach is effective and efficient. We have detected more than 5 known integer overflow vulnerabilities via buffer overflow.展开更多
At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification micro...At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.展开更多
Floodwater and debris flow caused by glacial lake burst is an important land process and a serious mountain disaster in glacial area of Xizang (Tibet) Autonomous Region, and the overflow burst is mainly caused by glac...Floodwater and debris flow caused by glacial lake burst is an important land process and a serious mountain disaster in glacial area of Xizang (Tibet) Autonomous Region, and the overflow burst is mainly caused by glacial landslide falling into moraine lake. On the premise that moraine lake is full, instantaneous burst in part of the lake bank happens, as flow velocity at burst mouth caused by overflow head is higher than threshold flow velocity of glacial till. Under some supposes, d(90) and d(10) of the glacial till in the hank were used as the threshold sizes of coarse and fine grains respectively. Thus, the formula of calculating threshold flow velocity of uniform sand was simplified, and threshold flow velocity of glacial till was calculated with the formula. Then, with synthesis formula calculating flow velocity of instantaneous part burst, flow velocity at overflow burst mouth was calculated, and calculation formula of critical height (H(0)) of overflow head was derived. Overflow head was caused by volume and surge of glacial landslide falling into moraine lake, calculation formulas of ascendant height (H(1)) of lake water surface and surge height (H(2)) on burst mouth caused by glacial landslide falling into moraine lake were derived. To sum up, critical hydrologic conditions of moraine lake burst with overflow form are: the burst is inevitable as H(1) > H(0); the burst is possible as H(1) < H(0) and (H(1)+H(2)) > H(0); the burst is impossible as (H(1)+H(2)) < H(0). In the factors influencing the burst critical conditions, it is advantageous for the burst that scale of the lake is 10(5)m(2) range; terminal glacial till is more fine and is even more uniform; the width of overflow mouth is even smaller than the length of the bank; the landslide has large scale and steep slip surface; and glacial end is close to the lake. With burst of Guangxiecuo Lake in Midui Valley of the Polongzangbu River in Xizang as an example, the burst critical conditions were tested.展开更多
After the bursting of Huiten Nor in Hoh Xil Region in September, 2011, the topic on whether the water overflowed from the Salt Lake would enter into the Chumaer River and become the northernmost source of the Yangtze ...After the bursting of Huiten Nor in Hoh Xil Region in September, 2011, the topic on whether the water overflowed from the Salt Lake would enter into the Chumaer River and become the northernmost source of the Yangtze River has aroused wide concern from public and academic field. Based on Landsat TM/ETM+/OLI remote sensing images during 2010–2015, SRTM 1 arc-second data, Google Earth elevation data and the observation data from the Wudaoliang meteorological station, the study initially analyzed the variations of the Salt Lake and its overflowing condition and probability. The results showed that the area of the Salt Lake expanded sharply from October 2011 to April 2013, and then it stepped into a stable expansion period. On October 27, 2015, the area of the Salt Lake had arrived at 151.38 km^2, which was about 3.35 times the area of the lake on March 3, 2010. The Salt Lake will overflow when its area reaches the range from 218.90 km^2 to 220.63 km^2. Due to the differences between SRTM DEM and Google Earth elevation data, the water level of the Salt Lake simulated would be 12 m or 9.6 m higher than the current level when the lake overflowed, and its reservoir capacity would increase by 23.71 km^3 or 17.27 km^3, respectively. Meanwhile, the overflowed water of the Salt Lake would run into the Qingshui River basin from its eastern part. Although the Salt Lake does not overflow in the coming decade, with watershed expansion of the Salt Lake and the projected precipitation increase in Hoh Xil region, the probability of water overflow from the Salt Lake and becoming a tributary of the Yangtze River will exist in the long term.展开更多
On the basis of the latest version of a U.S. Navy generalized digital environment model (GDEM-V3.0) and World Ocean Atlas (WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fre...On the basis of the latest version of a U.S. Navy generalized digital environment model (GDEM-V3.0) and World Ocean Atlas (WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that: (1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea (SCS); (2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness; (3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability; (4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait. Moreover, the deepwater overflow reaches its seasonal maximum in December (based on GDEM-V3.0) or in fall (October-December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest (3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.展开更多
Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically th...Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.展开更多
An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on ...An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.展开更多
Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was establishe...Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was established to analyze dynamic change characteristics of the uplift force of drill string during the shut-in period, and then a management procedure for the uplift risk during the shut-in period after gas overflow in the ultra-deep well was formed. Cross section method and pressure area method were used to analyze the force on drill string after shut-in of well, it was found that the source of uplift force was the "fictitious force" caused by the hydrostatic pressure in the well. When the fictitious force is in the opposite direction to the gravity, it is the uplift force. By adopting the theory of annular multiphase flow, considering the effects of wellbore afterflow and gas slippage, the dynamic change of the pressure and fluid in the wellbore and the uplift force of drill string during the shut-in period were analyzed. The magnitude and direction of uplift force are related to the length of drill string in the wellbore and shut-in time, and there is the risk of uplift of drill string when the length of drill string in the wellbore is smaller than the critical drill string length or the shut in time exceeds the critical shut in time. A set of treatment method and process to prevent the uplift of drill string is advanced during the shut-in period after overflow in the ultra-deep well, which makes the risk management of the drill string uplift in the ultra-deep well more rigorous and scientific.展开更多
文摘The author affiliation and the funding information in the Acknowledgement section of the online version of the original article was revised.One affiliation(the 8th affiliation)of the first author is added.The Acknowledgement section of the original article has been revised to:Acknowledgments:This research was funded by the National University of Mongolia under grant agreement P2023(grant number P2023-4578)and supported by the Chey Institute for Advanced Studies“International Scholarship Exchange Fellowship for the academic year of 2024-2025”,Republic of Korea,and the National University of Mongolia.We would like to acknowledge the National University of Mongolia and Soumik Das from the Center for the Study of Regional Development,Jawaharlal Nehru University,New Delhi-110067,for his valuable assistance in preparing the geological maps.
基金supported by the National Natural Science Foun-dation of China(52325001,52170009,and 52400114)the National Key Research and Development Program of China(2021YFC3200700 and 2021YFC3200702)+1 种基金the Program of Shanghai Academic Research Leader,China(21XD1424000)the Fundamental Research Funds for the Central Universities.
文摘Climate change is accelerating globally,raising significant concerns regarding the environmental risks associated with combined sewer overflows(CSOs).These rainfall events lead to the excessive discharge of multiple pollutants into natural waters.However,greenhouse gas(GHG)emissions from CSOs,which are crucial for carbon neutrality in urban water systems,remain fragmented.Using the life-cycle assess-ment method expansion approach,this study breaks down the formation and discharge processes of CSOs and uncovers the underlying mechanisms driving GHG emissions during each period.Given the complex-ity and uncertainty in the spatial distribution of GHG emissions from CSOs,the development of standard monitoring and estimation methods is vital.This study identifies the factors influencing GHG emissions within the urban drainage system(UDS)and defines the interactive GHG emission boundaries and accounting framework related to CSOs.This framework is expanded to consider the hybrid nature of urban engineering and hydraulic interactions during the CSO events.Advanced modeling technologies have emerged as essential tools for predicting and managing GHG emissions from CSOs.This review pro-motes comprehensive data-driven methods for predicting GHG emissions from CSOs,fully considering the inherent heterogeneity of CSOs and the impact of multi-source contaminants discharged into aquatic environments.It emphasizes refining emission boundary definitions,novel accounting practices adapting data-driven methods,and comprehensive management strategies in line with the move toward carbon neutrality in the UDS.It advocates the adoption of solutions including advanced technologies and artifi-cial intelligent methods to mitigate CSO-related GHG emissions,stressing the significance of integrating low-carbon solutions and a comprehensive data-driven management framework in future research directions.
基金funded by the National Natural Science Foundation of China(Grant Nos.42120104002,41941019)the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.AoE/E-603/18).
文摘During long-term operation,the performance of obstacles would be changed due to the material accumulating upslope the obstacle.However,the effects of retained material on impact,overflow and landing dynamics of granular flow have not yet been elucidated.To address this gap,physical flume tests and discrete element simulations are conducted considering a range of normalized deposition height h0/H from 0 to 1,where h0 and H represent the deposition height and obstacle height,respectively.An analytical model is modified to evaluate the flow velocity and flow depth after interacting with the retained materials,which further serve to calculate the peak impact force on the obstacle.Notably,the computed impact forces successfully predict the experimental results when a≥25°.In addition,the results indicate that a higher h0/H leads to a lower dynamic impact force,a greater landing distance L,and a larger landing coefficient Cr,where Cr is the ratio of slope-parallel component of landing velocity to flow velocity just before landing.Compared to the existing overflow model,the measured landing distance L is underestimated by up to 30%,and therefore it is insufficient for obstacle design when there is retained material.Moreover,the recommended Cr in current design practice is found to be nonconservative for estimating the landing velocity of geophysical flow.This study provides insightful scientific basis for designing obstacles with deposition.
基金The National Natural Science Foundation of China (No.60873050,60703086)the Opening Foundation of State Key Laboratory of Software Engineering in Wuhan University (No.SKLSE20080717)
文摘A simplified integer overflow detection method based on path relaxation is described for avoiding buffer overflow triggered by integer overflow. When the integer overflow refers to the size of the buffer allocated dynamically, this kind of integer overflow is most likely to trigger buffer overflow. Based on this discovery, through lightly static program analysis, the solution traces the key variables referring to the size of a buffer allocated dynamically and it maintains the upper bound and lower bound of these variables. After the constraint information of these traced variables is inserted into the original program, this method tests the program with test cases through path relaxation, which means that it not only reports the errors revealed by the current runtime value of traced variables contained in the test case, but it also examines the errors possibly occurring under the same execution path with all the possible values of the traced variables. The effectiveness of this method is demonstrated in a case study. Compared with the traditional buffer overflow detection methods, this method reduces the burden of detection and improves efficiency.
基金Supported by the National Natural Science Foundation of China (60903188), Shanghai Education Commission Innovation Foundation (11YZ192) and World Expo Science and Technology Special Fund of Shanghai Science and Technology Commission (08dz0580202).
文摘Integer overflow vulnerability will cause buffer overflow. The research on the relationship between them will help us to detect integer overflow vulnerability. We present a dynamic analysis methods RICB (Run-time Integer Checking via Buffer overflow). Our approach includes decompile execute file to assembly language; debug the execute file step into and step out; locate the overflow points and checking buffer overflow caused by integer overflow. We have implemented our approach in three buffer overflow types: format string overflow, stack overflow and heap overflow. Experiments results show that our approach is effective and efficient. We have detected more than 5 known integer overflow vulnerabilities via buffer overflow.
基金Project(50874022)supported by the National Natural Science Foundation of China
文摘At the late stage of solidification with ultrasonic treatment (UST) in Al-Si alloys, a part of semisolid overflows and climbs along the probe. The interesting phenomenon and its influence on the solidification microstructure were investigated in order to better study the mechanism of UST. It is considered that the overflowing phenomenon occurs due to the changes of vibration and flow in the remaining semisolid. Because the overflowed portion comes from the region with intense UST effect and vibrates with the probe during solidification, great modification of primary and euteetic Si (about 10 pm in length) and refinement of primary a(Al) (about 70 μm in size) are observed in this portion.
基金Foundation term: Under the auspices of the Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-306)
文摘Floodwater and debris flow caused by glacial lake burst is an important land process and a serious mountain disaster in glacial area of Xizang (Tibet) Autonomous Region, and the overflow burst is mainly caused by glacial landslide falling into moraine lake. On the premise that moraine lake is full, instantaneous burst in part of the lake bank happens, as flow velocity at burst mouth caused by overflow head is higher than threshold flow velocity of glacial till. Under some supposes, d(90) and d(10) of the glacial till in the hank were used as the threshold sizes of coarse and fine grains respectively. Thus, the formula of calculating threshold flow velocity of uniform sand was simplified, and threshold flow velocity of glacial till was calculated with the formula. Then, with synthesis formula calculating flow velocity of instantaneous part burst, flow velocity at overflow burst mouth was calculated, and calculation formula of critical height (H(0)) of overflow head was derived. Overflow head was caused by volume and surge of glacial landslide falling into moraine lake, calculation formulas of ascendant height (H(1)) of lake water surface and surge height (H(2)) on burst mouth caused by glacial landslide falling into moraine lake were derived. To sum up, critical hydrologic conditions of moraine lake burst with overflow form are: the burst is inevitable as H(1) > H(0); the burst is possible as H(1) < H(0) and (H(1)+H(2)) > H(0); the burst is impossible as (H(1)+H(2)) < H(0). In the factors influencing the burst critical conditions, it is advantageous for the burst that scale of the lake is 10(5)m(2) range; terminal glacial till is more fine and is even more uniform; the width of overflow mouth is even smaller than the length of the bank; the landslide has large scale and steep slip surface; and glacial end is close to the lake. With burst of Guangxiecuo Lake in Midui Valley of the Polongzangbu River in Xizang as an example, the burst critical conditions were tested.
基金National Natural Science Foundation of China,No.41261016,No.41561016Opening Foundation Projection of State Key Laboratory of Cryosphere Sciences,CAS,No.SKLCS-OP-2016-10Youth Scholar Scientific Capability Promoting Project of Northwest Normal University,No.NWNU-LKQN-14-4
文摘After the bursting of Huiten Nor in Hoh Xil Region in September, 2011, the topic on whether the water overflowed from the Salt Lake would enter into the Chumaer River and become the northernmost source of the Yangtze River has aroused wide concern from public and academic field. Based on Landsat TM/ETM+/OLI remote sensing images during 2010–2015, SRTM 1 arc-second data, Google Earth elevation data and the observation data from the Wudaoliang meteorological station, the study initially analyzed the variations of the Salt Lake and its overflowing condition and probability. The results showed that the area of the Salt Lake expanded sharply from October 2011 to April 2013, and then it stepped into a stable expansion period. On October 27, 2015, the area of the Salt Lake had arrived at 151.38 km^2, which was about 3.35 times the area of the lake on March 3, 2010. The Salt Lake will overflow when its area reaches the range from 218.90 km^2 to 220.63 km^2. Due to the differences between SRTM DEM and Google Earth elevation data, the water level of the Salt Lake simulated would be 12 m or 9.6 m higher than the current level when the lake overflowed, and its reservoir capacity would increase by 23.71 km^3 or 17.27 km^3, respectively. Meanwhile, the overflowed water of the Salt Lake would run into the Qingshui River basin from its eastern part. Although the Salt Lake does not overflow in the coming decade, with watershed expansion of the Salt Lake and the projected precipitation increase in Hoh Xil region, the probability of water overflow from the Salt Lake and becoming a tributary of the Yangtze River will exist in the long term.
基金The National Natural Science Foundation of China(NSFC)-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606405the National Basic Research Program(973 Program) of China under contract No.2011CB403502+2 种基金the National High Technology Research and Development Program(863 Program) of China under contract No.2013AA09A506the National Program on Global Change and Air-Sea Interaction under contract Nos GASI-IPOVAI-01-02 and GASI-03-01-01-04the National Natural Science Foundation of China under contract No.41606040
文摘On the basis of the latest version of a U.S. Navy generalized digital environment model (GDEM-V3.0) and World Ocean Atlas (WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that: (1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea (SCS); (2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness; (3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability; (4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait. Moreover, the deepwater overflow reaches its seasonal maximum in December (based on GDEM-V3.0) or in fall (October-December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest (3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.
文摘Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
基金The Foundation of China Ocean Mineral Resources R&D Association under contract No.DY135-E2-2-02the National Natural Science Foundation of China under contract Nos 9142820641976028 and 41806019。
文摘An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.
基金Supported by China National Science and Technology Major Project(2016ZX05020-006)
文摘Drill string will sustain large uplift force during the shut-in period after gas overflow in an ultra-deep well, and in serious case, it will run out of the wellhead. A calculation model of uplift force was established to analyze dynamic change characteristics of the uplift force of drill string during the shut-in period, and then a management procedure for the uplift risk during the shut-in period after gas overflow in the ultra-deep well was formed. Cross section method and pressure area method were used to analyze the force on drill string after shut-in of well, it was found that the source of uplift force was the "fictitious force" caused by the hydrostatic pressure in the well. When the fictitious force is in the opposite direction to the gravity, it is the uplift force. By adopting the theory of annular multiphase flow, considering the effects of wellbore afterflow and gas slippage, the dynamic change of the pressure and fluid in the wellbore and the uplift force of drill string during the shut-in period were analyzed. The magnitude and direction of uplift force are related to the length of drill string in the wellbore and shut-in time, and there is the risk of uplift of drill string when the length of drill string in the wellbore is smaller than the critical drill string length or the shut in time exceeds the critical shut in time. A set of treatment method and process to prevent the uplift of drill string is advanced during the shut-in period after overflow in the ultra-deep well, which makes the risk management of the drill string uplift in the ultra-deep well more rigorous and scientific.