Based on the crystal structures of two cucurbit[6]uril/calix[n]arene-based supramolecular frameworks reported by Long and co-workers,we further investigated the interactions of cucurbit[6]uril with 4-sulfocalix[4]aren...Based on the crystal structures of two cucurbit[6]uril/calix[n]arene-based supramolecular frameworks reported by Long and co-workers,we further investigated the interactions of cucurbit[6]uril with 4-sulfocalix[4]arene and 4-sulfocalix[6]arene using ^(1)H NMR spectroscopy and isothermal titration calorimetry(ITC),respectively.Moreover,solid fluorescent materials were prepared via the adsorption of fluorescent dyes by these porous supramolecular frameworks,which exhibit a selective response to certain volatile organic compounds.展开更多
In order to study the convection limits of surface fires and interactions between backfires and main fires,several experiments are conducted in a large space indoor laboratory: in which the effects of ambient wind spe...In order to study the convection limits of surface fires and interactions between backfires and main fires,several experiments are conducted in a large space indoor laboratory: in which the effects of ambient wind speeds and changing temperatures can be avoided.The research shows that:(1) there is a convection field in front of coming fires in which the wind speed direction is toward the fire.In the convection area,the lower part has higher wind speed and when the height is taller than a certain value the convection wind speed is not significant;(2) the backfire and the main fire interact with each other even though they are far apart.When they come near each other to a certain distance,they begin to draw each other.This increases their rates of spread toward each other significantly.For surface fires with a fire line intensity of 160?kW\5m -1 ,their rate of spread increases by 27%.展开更多
Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam forma...Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam formation,adsorption,and fouling and anti-fouling phenomena.These interactions at the molecular,nano-,and micro scale significantly influence and determine the macroscopic performance and efficiency of related engineering processes.Understanding the intermolecular and surface interactions in engineering processes is of both fundamental and practical importance,which not only improves production technologies,but also provides valuable insights into the development of new materials.In this review,the typical intermolecular and surface interactions involved in various engineering processes,including Derjaguin–Landau–Verwey–Overbeek(DLVO)interactions(i.e.,van der Waals and electrical doublelayer interactions)and non-DLVO interactions,such as steric and hydrophobic interactions,are first introduced.Nanomechanical techniques such as atomic force microscopy and surface forces apparatus for quantifying the interaction forces of molecules and surfaces in complex fluids are briefly introduced.Our recent progress on characterizing the intermolecular and surface interactions in several engineering systems are reviewed,including mineral flotation,petroleum engineering,wastewater treatment,and energy storage materials.The correlation of these fundamental interaction mechanisms with practical applications in resolving engineering challenges and the perspectives of the research field have also been discussed.展开更多
T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions ...T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.展开更多
The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces...The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.展开更多
The deviation from the classical elastic characteristics induced by the free surface energy can be considerable for nanostructures due to the high surface to volume ratio. Consequently, this type of size dependency sh...The deviation from the classical elastic characteristics induced by the free surface energy can be considerable for nanostructures due to the high surface to volume ratio. Consequently, this type of size dependency should be accounted for in the mechanical behaviors of nanoscale structures. In the current investigation, the influence of free surface energy on the nonlinear primary resonance of silicon nanoshells under soft harmonic external excitation is studied. In order to obtain more accurate results,the interaction between the first, third, and fifth symmetric vibration modes with the main oscillation mode is taken into consideration. Through the implementation of the Gurtin-Murdoch theory of elasticity into the classical shell theory, a size-dependent shell model is developed incorporating the effect of surface free energy. With the aid of the variational approach, the governing differential equations of motion including both of the cubic and quadratic nonlinearities are derived. Thereafter, the multi-time-scale method is used to achieve an analytical solution for the nonlinear size-dependent problem. The frequency-response and amplitude-response of the soft harmonic excited nanoshells are presented corresponding to different values of shell thickness and surface elastic constants as well as various vibration mode interactions. It is depicted that through consideration of the interaction between the higher symmetric vibration modes and the main oscillation mode, the hardening response of nanoshell changes to the softening one. This pattern is observed corresponding to both of the positive and negative values of the surface elastic constants and the surface residual stress.展开更多
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on...This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.展开更多
In this work,an improved understanding of electron sheath theory is provided using both fluid and kinetic approaches while elaborating on their implications for plasma–surface interactions.A fluid model is proposed c...In this work,an improved understanding of electron sheath theory is provided using both fluid and kinetic approaches while elaborating on their implications for plasma–surface interactions.A fluid model is proposed considering the electron presheath structure,avoiding the singularity in electron sheath Child–Langmuir law which overestimates the sheath potential.Subsequently,a kinetic model of electron sheath is established,showing considerably different sheath proflles in respect to the fluid model due to non-Maxwellian electron velocity distribution function and flnite ion temperature.The kinetic model is then further generalized and involves a more realistic truncated ion velocity distribution function.It is demonstrated that such a distribution function yields a super-thermal electron sheath whose entering velocity at the sheath edge is greater than the Bohm criterion prediction.Furthermore,an attempt is made to describe the electron presheath–sheath coupling within the kinetic framework,showing a necessary compromise between a realistic sheath entrance and the inclusion of kinetic effects.Finally,the secondary electron emissions induced by sheath-accelerated plasma electrons in an electron sheath are analysed and the influence of backscattering is discussed.展开更多
The mechanisms of Y on the wettability,surface tension,and interactions between the Ni-20 Co-20 Cr-10 Al-ξY alloys and MgO ceramics at 1873 K were investigated by sessile drop experiments.The results of nonlinear fit...The mechanisms of Y on the wettability,surface tension,and interactions between the Ni-20 Co-20 Cr-10 Al-ξY alloys and MgO ceramics at 1873 K were investigated by sessile drop experiments.The results of nonlinear fitting showed that the equilibrium contact angles and Y concentrations were approximately in accord with the log-normal distribution law.The equilibrium contact angles changed from 101.5°to 140.5°with Y increasing from 0 wt.%to 1.23 wt.%.Cross-sectional microstructure observations revealed that the thermal dissociation of ceramics occurred and the released[O]atoms can react with Y to produce Y_(2)O_(3) reaction layer along three-phase interphase area.Wetting kinetics analyses indicated that surface tension of the melt droplets had been positively correlated with the Y concentrations,and it increased from 737.8–1045.1 mN/m.Meanwhile,the pinning effect of the rough substrate surface on the three-phase line hindered the spreading of the liquid on ceramics.The change in total free energy of the alloys/ceramics system was considered as the key factor affecting the wettability.Moreover,the surface morphology and thermodynamic stability of ceramics also had some influence on the wettability.展开更多
Curcurbit[n]uril(Q[n])-based supramolecular frameworks(QSFs) constructed from the outer surface interaction of Q[n]s(OSIQ) have the characteristic of simplicity,diversity and modulability.Their simplicity is reflected...Curcurbit[n]uril(Q[n])-based supramolecular frameworks(QSFs) constructed from the outer surface interaction of Q[n]s(OSIQ) have the characteristic of simplicity,diversity and modulability.Their simplicity is reflected in their simple composition and preparation methods used for QSFs.The diversity of supramolecular organic frameworks(SOFs) is reflected in the synthesis methods and structural characteristics of the as-obtained QSFs,as well as the variety of structural directing agents and basic building blocks used to prepare QSFs.The modulability is reflected by the controllable channel size in the QSFs,which can be adjusted using different sizes of Q[n]s.In this work,the first re ported cucurbituril Q[6]was selected as the basic building block and three Q[6]-based su p ramolecular frameworks were obtained from aqueous HCl solutions in the presence of [CdCl_(4)]^(2-)respectively.The OSIQs are the main driving forces for the formation of these frameworks.This study shows the diversity of the QSFs.展开更多
Microplastics are emerging micropollutants in water threatening aquatic and land organisms.The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of t...Microplastics are emerging micropollutants in water threatening aquatic and land organisms.The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of the plastic waste.Although typical plastic-based materials are inert,the behavior of fragmented plastics is arbitrary and indefinite.When exposed to erratic water environments with the presence of organic and synthetic impurities,pH,temperature,and salt,microplastic surfaces may be potentially active and generate charges in water.These phenomena determine microplastics in water as a colloidal system.The classical Derjaguin Landau Verwey and Overbeek(DLVO)theory can be used to identify the microplastic surface behavior in water.The modification of microplastic surfaces eventually determines the overall interactions between microplastics and other constituents in water.Moreover,the geometry of microplastics and additives present in microcontaminants play a crucial role in their net interactions.Hence,multiple microplastic removal techniques,such as coagulation,filtration,and air flotation,can be developed to address the issue.In many cases,a combination of these methods may be needed to achieve the overall procedure in water treatment plants or generic water systems.Selection of an appropriate microplastic removal technique is crucial and should be based on the water environment and intended water use to ensure its safety.展开更多
The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevat...The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevation, the second_order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface_waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non_resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second_order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.展开更多
The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower r...The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,whic...We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode.Across a broad frequency range(above 0.05 eV),the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position.In addition,this phenomenon still exists for slightly different radius of the ANPs.We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed.In addition,the radius of ANP has little effect on this.When the two dipoles are far from the ANP,the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode.In contrast,when the two dipoles are close to the ANP,the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole.Our results may be used in a biological detector and have a certain guiding significance for further application.展开更多
The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flota...The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flotation. Energy equation of a reagent interacting with mineral surface has been deduced from this model. Results of the studies indicate that the interaction energy between mineral surface and a reagent is about several dozen kJ/mol, and the relationship between adsorbing concentration of xanthate on mineral surface and interaction energy is the exponent form.展开更多
Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. I...Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to:(a) understand pollutant exchange between surface water and groundwater,(b) quantify nutrient loadings, and(c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat(Triticum aestivum L.) and maize(Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River(up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface(up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless,both nitrogen species were only detected at low concentrations in shallow groundwater,averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.展开更多
Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyz...Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.展开更多
Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remot...Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.展开更多
Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface ...Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface points have been proposed on the basis of radial basis functions,a weighted sum of local functions,splines,wavelets,and combinations of them.However,if the surface points contain errors or are sparsely distributed,irregular components,such as curvature-shaped redundant bulges and unexpectedly generated high-frequency components,are commonly seen.This paper presents a framework for restoring irregular components generated on and around surfaces.Users are assumed to specify local masks that cover irregular components and parameters that determine the degree of restoration.The algorithm in this paper removes the defects based on the user-specific masks and parameters.Experiments have shown that the proposed methods can effectively remove redundant protrusions and jaggy noise.展开更多
基金the financial support of National Natural Science Foundation of China(Nos.51663005,21761007 and21871064)Science and Technology Plan Project of Guizhou Province(Nos.20175788 and 20185781)+2 种基金the Creative Research Groups of Guizhou Provincial Education Department(No.2017028)the Innovation Program for High-level Talents of Guizhou Province(No.20165657)“Chun-Hui” Fund of Chinese Ministry of Education(No.Z2017005)。
文摘Based on the crystal structures of two cucurbit[6]uril/calix[n]arene-based supramolecular frameworks reported by Long and co-workers,we further investigated the interactions of cucurbit[6]uril with 4-sulfocalix[4]arene and 4-sulfocalix[6]arene using ^(1)H NMR spectroscopy and isothermal titration calorimetry(ITC),respectively.Moreover,solid fluorescent materials were prepared via the adsorption of fluorescent dyes by these porous supramolecular frameworks,which exhibit a selective response to certain volatile organic compounds.
文摘In order to study the convection limits of surface fires and interactions between backfires and main fires,several experiments are conducted in a large space indoor laboratory: in which the effects of ambient wind speeds and changing temperatures can be avoided.The research shows that:(1) there is a convection field in front of coming fires in which the wind speed direction is toward the fire.In the convection area,the lower part has higher wind speed and when the height is taller than a certain value the convection wind speed is not significant;(2) the backfire and the main fire interact with each other even though they are far apart.When they come near each other to a certain distance,they begin to draw each other.This increases their rates of spread toward each other significantly.For surface fires with a fire line intensity of 160?kW\5m -1 ,their rate of spread increases by 27%.
文摘Interactions involving chemical reagents,solid particles,gas bubbles,liquid droplets,and solid surfaces in complex fluids play a vital role in many engineering processes,such as froth flotation,emulsion and foam formation,adsorption,and fouling and anti-fouling phenomena.These interactions at the molecular,nano-,and micro scale significantly influence and determine the macroscopic performance and efficiency of related engineering processes.Understanding the intermolecular and surface interactions in engineering processes is of both fundamental and practical importance,which not only improves production technologies,but also provides valuable insights into the development of new materials.In this review,the typical intermolecular and surface interactions involved in various engineering processes,including Derjaguin–Landau–Verwey–Overbeek(DLVO)interactions(i.e.,van der Waals and electrical doublelayer interactions)and non-DLVO interactions,such as steric and hydrophobic interactions,are first introduced.Nanomechanical techniques such as atomic force microscopy and surface forces apparatus for quantifying the interaction forces of molecules and surfaces in complex fluids are briefly introduced.Our recent progress on characterizing the intermolecular and surface interactions in several engineering systems are reviewed,including mineral flotation,petroleum engineering,wastewater treatment,and energy storage materials.The correlation of these fundamental interaction mechanisms with practical applications in resolving engineering challenges and the perspectives of the research field have also been discussed.
文摘T shaped skin-stiffener joint are one of the most commonly used structures in aerospace components.It has been proven in various studies that these joints are susceptible to failure when loaded in pull out conditions however,in specific applications these joints undergo pull loading.De-lamination/de-bond nucleation and its growth is one of the most common failure mechanisms in a fiber reinforced composite structure.Crack growth takes place due to the induced interlaminar normal and shear stresses between different structural constituents when a load is applied.In this study,Finite Element Analysis has been performed using cohesive contact interactions on a composite T-joint to simulate the pull out test conditions.A simplified shell based model coupled with CZM is proposed,which can evaluate the failure initiation and progression accurately with lesser computational efforts.The final failure occurred at a displacement of 4.71 mm at the computed failure load of 472.57 kgf for basic configuration.Computed Failure load for the padded configuration is 672.8 kgf and corresponding displacement is 4.6 mm.The results obtained by the proposed numerical model are validated by experimental results and it is observed that predicted failure displacements and failure load calculated were correlating reasonably well with the experiment.
基金Project(2014BAB01B03)supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of ChinaProject(51774286)supported by the National Natural Science Foundation of ChinaProject(BK20150192)supported by the Natural Science Foundation of Jiaaagsu Province,China
文摘The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.
文摘The deviation from the classical elastic characteristics induced by the free surface energy can be considerable for nanostructures due to the high surface to volume ratio. Consequently, this type of size dependency should be accounted for in the mechanical behaviors of nanoscale structures. In the current investigation, the influence of free surface energy on the nonlinear primary resonance of silicon nanoshells under soft harmonic external excitation is studied. In order to obtain more accurate results,the interaction between the first, third, and fifth symmetric vibration modes with the main oscillation mode is taken into consideration. Through the implementation of the Gurtin-Murdoch theory of elasticity into the classical shell theory, a size-dependent shell model is developed incorporating the effect of surface free energy. With the aid of the variational approach, the governing differential equations of motion including both of the cubic and quadratic nonlinearities are derived. Thereafter, the multi-time-scale method is used to achieve an analytical solution for the nonlinear size-dependent problem. The frequency-response and amplitude-response of the soft harmonic excited nanoshells are presented corresponding to different values of shell thickness and surface elastic constants as well as various vibration mode interactions. It is depicted that through consideration of the interaction between the higher symmetric vibration modes and the main oscillation mode, the hardening response of nanoshell changes to the softening one. This pattern is observed corresponding to both of the positive and negative values of the surface elastic constants and the surface residual stress.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579122,51609109,and 51622902)the Natural Science Found of Jiangsu Province(Grant No.BK20160556)+1 种基金the University Natural Science Research Project of Jiangsu Province(Grant No.16kjb70003)the Key Lab Foundation for Advanced Manufacturing Technology of Jiangsu Province(Grant No.CJ1506)
文摘This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.
基金the auspices of National Natural Science Foundation of China(Nos.51827809,52077169)the National Key R&D Program of China(No.2020YFC2201100)。
文摘In this work,an improved understanding of electron sheath theory is provided using both fluid and kinetic approaches while elaborating on their implications for plasma–surface interactions.A fluid model is proposed considering the electron presheath structure,avoiding the singularity in electron sheath Child–Langmuir law which overestimates the sheath potential.Subsequently,a kinetic model of electron sheath is established,showing considerably different sheath proflles in respect to the fluid model due to non-Maxwellian electron velocity distribution function and flnite ion temperature.The kinetic model is then further generalized and involves a more realistic truncated ion velocity distribution function.It is demonstrated that such a distribution function yields a super-thermal electron sheath whose entering velocity at the sheath edge is greater than the Bohm criterion prediction.Furthermore,an attempt is made to describe the electron presheath–sheath coupling within the kinetic framework,showing a necessary compromise between a realistic sheath entrance and the inclusion of kinetic effects.Finally,the secondary electron emissions induced by sheath-accelerated plasma electrons in an electron sheath are analysed and the influence of backscattering is discussed.
基金supported by the National Natural Science Foundation of China(Nos.51604014 and 51404017)the National Science&Technology Pillar Program of China(No.2013BAB11B04)。
文摘The mechanisms of Y on the wettability,surface tension,and interactions between the Ni-20 Co-20 Cr-10 Al-ξY alloys and MgO ceramics at 1873 K were investigated by sessile drop experiments.The results of nonlinear fitting showed that the equilibrium contact angles and Y concentrations were approximately in accord with the log-normal distribution law.The equilibrium contact angles changed from 101.5°to 140.5°with Y increasing from 0 wt.%to 1.23 wt.%.Cross-sectional microstructure observations revealed that the thermal dissociation of ceramics occurred and the released[O]atoms can react with Y to produce Y_(2)O_(3) reaction layer along three-phase interphase area.Wetting kinetics analyses indicated that surface tension of the melt droplets had been positively correlated with the Y concentrations,and it increased from 737.8–1045.1 mN/m.Meanwhile,the pinning effect of the rough substrate surface on the three-phase line hindered the spreading of the liquid on ceramics.The change in total free energy of the alloys/ceramics system was considered as the key factor affecting the wettability.Moreover,the surface morphology and thermodynamic stability of ceramics also had some influence on the wettability.
基金the financial support of the National Natural Science Foundation of China(Nos.21761007,51663005 and 21871064)Science and Technology Plan Project of Guizhou Province(Nos.20175788 and 20185781)。
文摘Curcurbit[n]uril(Q[n])-based supramolecular frameworks(QSFs) constructed from the outer surface interaction of Q[n]s(OSIQ) have the characteristic of simplicity,diversity and modulability.Their simplicity is reflected in their simple composition and preparation methods used for QSFs.The diversity of supramolecular organic frameworks(SOFs) is reflected in the synthesis methods and structural characteristics of the as-obtained QSFs,as well as the variety of structural directing agents and basic building blocks used to prepare QSFs.The modulability is reflected by the controllable channel size in the QSFs,which can be adjusted using different sizes of Q[n]s.In this work,the first re ported cucurbituril Q[6]was selected as the basic building block and three Q[6]-based su p ramolecular frameworks were obtained from aqueous HCl solutions in the presence of [CdCl_(4)]^(2-)respectively.The OSIQs are the main driving forces for the formation of these frameworks.This study shows the diversity of the QSFs.
基金supported by the Universiti Sains Malaysia Apex Era Research Grant(Grant No.1001.PBAHAN.881008).
文摘Microplastics are emerging micropollutants in water threatening aquatic and land organisms.The microplastic–water system is complicated due to the multiple constituents in the water system and the minuscule size of the plastic waste.Although typical plastic-based materials are inert,the behavior of fragmented plastics is arbitrary and indefinite.When exposed to erratic water environments with the presence of organic and synthetic impurities,pH,temperature,and salt,microplastic surfaces may be potentially active and generate charges in water.These phenomena determine microplastics in water as a colloidal system.The classical Derjaguin Landau Verwey and Overbeek(DLVO)theory can be used to identify the microplastic surface behavior in water.The modification of microplastic surfaces eventually determines the overall interactions between microplastics and other constituents in water.Moreover,the geometry of microplastics and additives present in microcontaminants play a crucial role in their net interactions.Hence,multiple microplastic removal techniques,such as coagulation,filtration,and air flotation,can be developed to address the issue.In many cases,a combination of these methods may be needed to achieve the overall procedure in water treatment plants or generic water systems.Selection of an appropriate microplastic removal technique is crucial and should be based on the water environment and intended water use to ensure its safety.
文摘The basic equations of free capillary_gravity surface_waves in a circular cylindrical basin were derived from Luke's principle. Taking Galerkin's expansion of the velocity potential and the free surface elevation, the second_order perturbation equations were derived by use of expansion of multiple scale. The nonlinear interactions with the second order internal resonance of three free surface_waves were discussed based on the above. The results include:derivation of the couple equations of resonant interactions among three waves and the conservation laws; analysis of the positions of equilibrium points in phase plane; study of the resonant parameters and the non_resonant parameters respectively in all kinds of circumstances; derivation of the stationary solutions of the second_order interaction equations corresponding to different parameters and analysis of the stability property of the solutions; discussion of the effective solutions only in the limited time range. The analysis makes it clear that the energy transformation mode among three waves differs because of the different initial conditions under nontrivial circumstance. The energy may either exchange among three waves periodically or damp or increase in single waves.
文摘The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金supported by the National Natural Science Foundation of China(Grant Nos.11347215,11464014,and 11104113)the Natural Science Foundation of Hunan Province,China(Grant Nos.13JJ6059 and 13JJB015)the Natural Science Foundation of Education Department of Hunan Province,China(Grant Nos.13C750 and 13B091)
文摘We use the photon Green-function method to study the quantum resonant dipole-dipole interaction(RDDI) induced by an Ag nanosphere(ANP).As the distance between the two dipoles increases,the RDDI becomes weaker,which is accompanied by the influence of the higher-order mode of the ANP on RDDI declining more quickly than that of the dipole mode.Across a broad frequency range(above 0.05 eV),the transfer rate of the RDDI is nearly constant since the two dipoles are fixed at the proper position.In addition,this phenomenon still exists for slightly different radius of the ANPs.We find that the frequency corresponding to the maximum transfer rate of RDDI exhibits a monotonic decrease by moving away one dipole as the other dipole and the ANP are kept fixed.In addition,the radius of ANP has little effect on this.When the two dipoles are far from the ANP,the maximum transfer rate of the RDDI takes place at the frequency of the dipole mode.In contrast,when the two dipoles are close to the ANP,the higher-order modes come into effect and they will play a leading role in the RDDI if they match the transition frequency of the dipole.Our results may be used in a biological detector and have a certain guiding significance for further application.
文摘The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flotation. Energy equation of a reagent interacting with mineral surface has been deduced from this model. Results of the studies indicate that the interaction energy between mineral surface and a reagent is about several dozen kJ/mol, and the relationship between adsorbing concentration of xanthate on mineral surface and interaction energy is the exponent form.
基金the Sino-Danish Centre for Education and Research, and the Technical University of Denmark for funding this project
文摘Fertilizer input for agricultural food production, as well as the discharge of domestic and industrial water pollutants, increases pressures on locally scarce and vulnerable water resources in the North China Plain. In order to:(a) understand pollutant exchange between surface water and groundwater,(b) quantify nutrient loadings, and(c) identify major nutrient removal pathways by using qualitative and quantitative methods, including the geochemical model PHREEQC) a one-year study at a wheat(Triticum aestivum L.) and maize(Zea mays L.) double cropping system in the Baiyang Lake area in Hebei Province, China, was undertaken. The study showed a high influence of low-quality surface water on the shallow aquifer. Major inflowing pollutants into the aquifer were ammonium and nitrate via inflow from the adjacent Fu River(up to 29.8 mg/L NH4-N and 6.8 mg/L NO3-N), as well as nitrate via vertical transport from the field surface(up to 134.8 mg/L NO3-N in soil water). Results from a conceptual model show an excess nitrogen input of about 320 kg/ha/a. Nevertheless,both nitrogen species were only detected at low concentrations in shallow groundwater,averaging at 3.6 mg/L NH4-N and 1.8 mg/L NO3-N. Measurement results supported by PHREEQC-modeling indicated cation exchange, denitrification, and anaerobic ammonium oxidation coupled with partial denitrification as major nitrogen removal pathways. Despite the current removal capacity, the excessive nitrogen fertilization may pose a future threat to groundwater quality. Surface water quality improvements are therefore recommended in conjunction with simultaneous monitoring of nitrate in the aquifer, and reduced agricultural N-inputs should be considered.
基金Project(2017YFC0805406)supported by the National Key Research and Development Program of ChinaProjects(51879142,51679123)supported by the National Natural Science Foundation of ChinaProject(2020-KY-04)supported by the Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,China。
文摘Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.
基金Project supported by the National Natural Science Foundation of China(Nos.51474251,51874351,and 11502226)the Natural Science Foundation of Hunan Province of China(No.2019JJ50625)and the Key Research and Development Plan of Hunan Province of China(No.2017WK2032)。
文摘Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.
文摘Implicit surface generation based on the interpolation of surface points is one of the well-known modeling methods in the area of computer graphics.Several methods for the implicit surface reconstruction from surface points have been proposed on the basis of radial basis functions,a weighted sum of local functions,splines,wavelets,and combinations of them.However,if the surface points contain errors or are sparsely distributed,irregular components,such as curvature-shaped redundant bulges and unexpectedly generated high-frequency components,are commonly seen.This paper presents a framework for restoring irregular components generated on and around surfaces.Users are assumed to specify local masks that cover irregular components and parameters that determine the degree of restoration.The algorithm in this paper removes the defects based on the user-specific masks and parameters.Experiments have shown that the proposed methods can effectively remove redundant protrusions and jaggy noise.