Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective a...Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective activity and mechanism of Chinese dwarf cherry polyphenol extract(OPE)was studied.In vitro,OPE stimulated the alkaline phosphatase activity in the early differentiation stage,increased the osteocalcin level in the middle differentiation stage,and induced the formation of more bonemineralized nodules in the late osteogenic stage.In vivo,OPE improved cancellous bone structure and maximum load of the femur in ovariectomized(OVX)rats.The balance between bone formation and resorption was regulated.Oxidative stress levels in the peripheral blood,liver and femur were reduced.OPE alleviated the disturbance in energy metabolism,muscle development,and muscle regulation-related signaling pathways caused by OVX and activated the calcium/adenosine monophosphate-activated protein kinase signaling pathway.Therefore,OPE is a potential dietary supplement for the prevention and treatment of osteoporosis.展开更多
RANKL signaling is essential for osteoclastogenesis. Its role in osteoblastic differentiation and bone formation is unknown. Here we demonstrate that RANK is expressed at an early stage of bone marrow mesenchymal stem...RANKL signaling is essential for osteoclastogenesis. Its role in osteoblastic differentiation and bone formation is unknown. Here we demonstrate that RANK is expressed at an early stage of bone marrow mesenchymal stem cells(BMSCs) during osteogenic differentiation in both mice and human and decreased rapidly. RANKL signaling inhibits osteogenesis by promoting β-catenin degradation and inhibiting its synthesis. In contrast, RANKL signaling has no significant effects on adipogenesis of BMSCs.Interestingly, conditional knockout of rank in BMSCs with Prx1-Cre mice leads to a higher bone mass and increased trabecular bone formation independent of osteoclasts. In addition, rank: Prx1-Cre mice show resistance to ovariectomy-(OVX) induced bone loss. Thus, our results reveal that RANKL signaling regulates both osteoclasts and osteoblasts by inhibition of osteogenic differentiation of BMSCs and promotion of osteoclastogenesis.展开更多
While stromal interactions are essential in cancer adaptation to hormonal therapies,the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood.Here,we tissue-engineered and...While stromal interactions are essential in cancer adaptation to hormonal therapies,the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood.Here,we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases,and used it to study the effects of androgen deprivation in this microenvironment.The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds,leading to a mineralized osteoblast-derived microtissue containing,in a 3D setting,viable osteoblastic cells,osteocytic cells,and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins,and mineral content.Direct co-culture of androgen receptordependent/ independent cell lines (LNCaP,C4-2B,and PC3) led cancer cells to display functional and molecular features as observed in vivo.Co-cultured cancer cells showed increased affinity to the microtissues,as a function of their bone metastatic potential.Cocultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation,consistent with the clinical marker profile of osteoblastic bone metastases.LNCaP showed a significant adaptive response under androgen deprivation in the microtissues,with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase,enolase 2).Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor,alkaline phosphatase,and dopa decarboxylase,as seen in the transition towards resistance.The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.展开更多
Amyloid beta(AB)peptide 40 enhances the activation of receptor for advanced glycation end products(RAGE)in immune-inflammatory diseases.RAGE exhibits several ffects in the setting of numerous cardiovascular events.We ...Amyloid beta(AB)peptide 40 enhances the activation of receptor for advanced glycation end products(RAGE)in immune-inflammatory diseases.RAGE exhibits several ffects in the setting of numerous cardiovascular events.We bypothesized that the Aβ40/RAGE pathway is involved in the osteoblastic differentiation of the valvular interstitial cell(VIC)phenotype,and RAGE knockout intervention could reduce the calcification of aortic valve interstitial cells(AVICs)by inhibiting the extracellular-regulated kinase1/2(ERK 1/2)/nuclear factor kappa-B(NF-kB)signaling pathway.To test this hypothesis,the activation of AB40/RAGE pathway in human calcific AVs was evaluated with immunohistochemical staining.Cultured calcific VIC models were used in vitro.The VICs were stimulated using Aβ40,with or without RAGE small interfering ribonucleic acid(siRNA),and ERK1/2 and NF-κB inhibitors for analysis.Our data revealed that AB40 induced the ERK 1/2/NF-κB signaling pathway and osteoblastic differentiation of AVICs via the RAGE pathway in vitro.展开更多
Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three n...Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.展开更多
Objective:Bone metastasis occurs in up to 90%of men with advanced prostate cancer and leads to fractures,severe pain and therapy-resistance.Bone metastases induce a spectrum of types of bone lesions which can respond ...Objective:Bone metastasis occurs in up to 90%of men with advanced prostate cancer and leads to fractures,severe pain and therapy-resistance.Bone metastases induce a spectrum of types of bone lesions which can respond differently to therapy even within individual prostate cancer patients.Thus,the special environment of the bone makes the disease more complicated and incurable.A model in which bone lesions are reproducibly induced that mirrors the complexity seen in patients would be invaluable for pre-clinical testing of novel treatments.The microstructural changes in the femurs of mice implanted with PCSD1,a new patient-derived xenograft from a surgical prostate cancer bone metastasis specimen,were determined.Methods:Quantitative micro-computed tomography(micro-CT)and histological analyses were performed to evaluate the effects of direct injection of PCSD1 cells or media alone(Control)into the right femurs of Rag2/gc/male mice.Results:Bone lesions formed only in femurs of mice injected with PCSD1 cells.Bone volume(BV)was significantly decreased at the proximal and distal ends of the femurs(p<0.01)whereas BV(p<0.05)and bone shaft diameter(p<0.01)were significantly increased along the femur shaft.Conclusion:PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur,and,in contrast,induced aberrant bone formation leading to osteoblastic lesions along the femur shaft.Therefore,the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion.Our approach can be used to determine if different bone regions support more therapy resistant tumor growth,thus,requiring novel treatments.展开更多
Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in...Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,展开更多
Carcinosarcomas are rare,malignant,biphasic tumors simultaneously comprising carcinoma and sarcoma in a single tumor.We present an extremely rare case of gastric carcinosarcoma with an osteoblastic component that dras...Carcinosarcomas are rare,malignant,biphasic tumors simultaneously comprising carcinoma and sarcoma in a single tumor.We present an extremely rare case of gastric carcinosarcoma with an osteoblastic component that drastically changed its shape within 2 mo.A 59-year-old male patient presented to the emergency outpatient unit with a complaint of black stool.Gastrointestinal endoscopy showed an ulcerated mass in the cardia of the lesser curvature of the stomach.Biopsy specimens revealed only adenocarcinoma.Two months later,the ulcerated lesion drastically changed its shape into an exophytic tumor.Total gastrectomy was performed.In the resected specimen,the gastric tumor contained both adenocarcinoma and sarcoma components with lace-like osteoid.The patient died 7 mo after the operation,and an autopsy was performed.In the autopsy,widespread metastases were present in the liver,lung,lymph nodes and peritoneum.In this report,we describe a case of gastric carcinosarcoma and presume its tumorigenesis based on the autopsy findings.展开更多
To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL cultur...To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL culture medium for 48 h. Then, the mRNA expression of selected genes were quantified by real-time polymerase chain reaction (PCR), including the attachment-related genes (α integrin and actin), the proliferation-related gene (c-jun), and the osteoblastic markers genes (type I collagen, osteonectin, alkaline phosphatase, RUNX2 and osteoclain). The results showed that β-TCP particles (the average size 809 nm) significantly promote the attachment and the proliferation of MG-63 cells, and slightly enhance the osteoblastic differentiation based on the analyses of the related genes expression. This study provided scientific evidences to better reveal the underlines of functions of β-TCP in bone repair.展开更多
Biointerface design can greatly influence cell behavior. Therefore, in this study we examined the effects of three surface characteristics, roughness, chemistry, and wettability, on osteoblastic cell differentiation. ...Biointerface design can greatly influence cell behavior. Therefore, in this study we examined the effects of three surface characteristics, roughness, chemistry, and wettability, on osteoblastic cell differentiation. We examined osteoblastic differentiation on titanium (Ti) samples with four levels of roughness (average roughness: 148.6 ± 23.1, 42 ± 6.2, 14.3 ± 5.5, 7.2 ± 1.6 nm) with or without a nanolayer coating of polydopamine (PDA). In vitro osteogenic differentiation was evaluated by quantifying alkaline phosphatase (AP) activity of human fetal preosteoblastic (hFOB 1.19) cells. The change in surface chemistry of Ti samples as a result of PDA coating was assessed by XPS analysis and water contact angle measurement. Results demonstrated that PDA treated samples were more hydrophilic, compared to untreated samples, and this was substrate roughness independent. Moreover, with the exception of the substrate with an oriented texture of surface nanotopography (RTi-4), the presence of a PDA nanolayer increased AP activity independent of substrate roughness. Our results suggest that surface chemistry and wettability, induced by a PDA nanolayer coating, had a greater effect on osteoblastic differentiation than did surface roughness.展开更多
There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy(HRT). The present study was designed to investigate the in vitro effects of estrogen-like activitie...There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy(HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase(ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor(PR) and PS2 m RNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.展开更多
It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic G...It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic GnRH,pituitary FSH,LH and osteoblastic BGP,indicating that the Chinese drugs for tonifying the kidney can regulate gene expression of the hypothalamic GnRH,pituitary FSH,LH,and osteoblastic BGP,which is possibly one of the main mechanisms of the Chinese drug for tonifying the kidney,regulating ephebic development process and improving skeletal development in sexual precocity children.展开更多
Introduction: Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. Patients and Methods: In the present study, we pres...Introduction: Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. Patients and Methods: In the present study, we present a case of FOP with marked progressive ossification of extraskeletal tissues. We investigated whether soluble factors in serum would affect the osteoblast phenotype by examining the effects of serum from this patient and control subjects on mouse osteoblastic MC3T3-E1 cells. Results: The clinical findings of this patient were compatible with FOP, and direct sequence analysis of genomic DNA demonstrated the presence of a heterozygous 617G> A (R206H) mutation of activin type 1 receptor (ACVR1). Serum from the FOP patient enhanced the level of alkaline phosphatase (ALP) in Western blotting, compared with serum from the control, in MC3T3-E1 cells. Moreover, serum from the FOP patient enhanced the levels of ALP, osteocalcin and bone morphogenetic protein-2 mRNA in these cells. Conclusion: We presented a case of FOP with progressive ossification in extra-skeletal tissues with ACVR1 mutation. The present data suggest that the serum from this patient includes some soluble factors, which might enhance the osteoblast differentiation and BMP-2 expression in mouse osteoblastic cells.展开更多
Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of t...Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1(PCBP1).Additionally,Ma et al used a lentivirus infection system to express PCBP1.As the authors’method of administration can be improved in terms of stability and cost,we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles.First,PCBP1 is small and druggable.Second,intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation.Furthermore,incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1’s structure and activity.Notably,the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.展开更多
Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity.Current therapies,including antiosteoporosis drugs and artificial bone grafts,ar...Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity.Current therapies,including antiosteoporosis drugs and artificial bone grafts,are not always satisfactory.Herein,a strontium-substituted calcium phosphate silicate bioactive ceramic(Sr-CPS)was fabricated.In the present study,the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study.The cytocompatibility,osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS.Molecular mechanisms were also evaluated by Western blot.Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/β-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway.In vivo,micro-CT,histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats.Compared with CPS,Sr-CPS significantly promoted critical sized ovariectomy(OVX)calvarial defects healing.Among all the samples,Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates.Overall,the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption,which might be a promising candidate for the reconstruction of osteoporotic bone defect.展开更多
More than 50%of prostate cancer(PCa)patients have bone metastasis with osteo-blastic lesions.MiR-18a-5p is associated with the development and metastasis of PCa,but it remains unclear whether it is involved in osteobl...More than 50%of prostate cancer(PCa)patients have bone metastasis with osteo-blastic lesions.MiR-18a-5p is associated with the development and metastasis of PCa,but it remains unclear whether it is involved in osteoblastic lesions.We first found that miR-18a-5p was highly expressed in the bone microenvironment of patients with PCa bone metastases.To address how miR-18a-5p affects PCa osteoblastic lesions,antagonizing miR-18a-5p in PCa cells or pre-osteoblasts inhibited osteoblast differentiation in vitro.Moreover,injection of PCa cells with miR-18a-5p inhibition improved bone biomechanical properties and bone mineral mass in vivo.Furthermore,miR-18a-5p was transferred to osteoblasts by exosomes derived from PCa cells and targeted the Hist1h2bc gene,resulting in Ctnnb1 up-regulation in the Wnt/β-catenin signaling pathway.Translationally,antagomir-18a-5p significantly improved bone biomechanical properties and alleviated sclerotic lesions from osteoblastic me-tastases in BALB/c nude mice.These data suggest that inhibition of exosome-delivered miR-18a-5p ameliorates PCa-induced osteoblastic lesions.展开更多
While both induction culture media and matrix have been reported to regulate the stem cell fate,little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the...While both induction culture media and matrix have been reported to regulate the stem cell fate,little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms.To this aim,we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes,which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages,respectively,and cultured them with osteogenic,chondrogenic and normal culture media,respectively.A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion,cytoskeleton organization,proliferation,and in particular differentiation into the osteoblastic and chondrocytic lineages.The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did.The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study,where canonical Wnt-b-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation.Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations,but also have important implications in biomaterial design for tissue engineering applications.展开更多
The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,...The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.展开更多
Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was dimini...Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was diminished in the bone of aged and ovariectomized(OVX)mice,as well as in the serum of osteopenia and osteoporosis patients.In vitro loss-of-function and gain-offunction studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells.In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice.Mechanistically,NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1(Fn1).Moreover,we found that NELL2 activated the focal adhesion kinase(FAK)/AKT signaling pathway through Fn1/integrinβ1(ITGB1),leading to the promotion of osteogenesis and the inhibition of adipogenesis.Notably,administration of NELL2-AAV was found to ameliorate bone loss in OVX mice.These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis,suggesting its potential as a therapeutic target for managing osteoporosis.展开更多
The death of osteoblasts induced by glucocorticoid(GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head(SIONFH).Improving bone formation driven by ...The death of osteoblasts induced by glucocorticoid(GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head(SIONFH).Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH.Isovitexin has demonstrated antioxidant properties,but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.In this study,we analyzed clinical samples obtained from SIONFH patients using proteomic and bioinformatic approaches.展开更多
基金supported by the National Natural Science Foundation of China(32470399)Beijing Natural Science Foundation(5212014)Key Research and Development Program in the Ningxia Hui Autonomous Region,China(2020BBF02027).
文摘Chinese dwarf cherry(Cerasus humilis)is a fruit unique to China,which is considered to have osteoprotective effects.However,no systematic experimental characterization was available.In this study,the osteoprotective activity and mechanism of Chinese dwarf cherry polyphenol extract(OPE)was studied.In vitro,OPE stimulated the alkaline phosphatase activity in the early differentiation stage,increased the osteocalcin level in the middle differentiation stage,and induced the formation of more bonemineralized nodules in the late osteogenic stage.In vivo,OPE improved cancellous bone structure and maximum load of the femur in ovariectomized(OVX)rats.The balance between bone formation and resorption was regulated.Oxidative stress levels in the peripheral blood,liver and femur were reduced.OPE alleviated the disturbance in energy metabolism,muscle development,and muscle regulation-related signaling pathways caused by OVX and activated the calcium/adenosine monophosphate-activated protein kinase signaling pathway.Therefore,OPE is a potential dietary supplement for the prevention and treatment of osteoporosis.
基金supported by the National Natural Science Foundation (NNSF) Key Research Program in Aging (91749204)National Natural Science Foundation of China (81871099, 31370958, 81701364, 81771491, 81501052)+1 种基金Shanghai Municipal Science and Technology Commission Key Program (15411950600, 18431902300)Municipal Human Resources Development Program for Outstanding Leaders in Medical Disciplines in Shanghai (2017BR011)
文摘RANKL signaling is essential for osteoclastogenesis. Its role in osteoblastic differentiation and bone formation is unknown. Here we demonstrate that RANK is expressed at an early stage of bone marrow mesenchymal stem cells(BMSCs) during osteogenic differentiation in both mice and human and decreased rapidly. RANKL signaling inhibits osteogenesis by promoting β-catenin degradation and inhibiting its synthesis. In contrast, RANKL signaling has no significant effects on adipogenesis of BMSCs.Interestingly, conditional knockout of rank in BMSCs with Prx1-Cre mice leads to a higher bone mass and increased trabecular bone formation independent of osteoclasts. In addition, rank: Prx1-Cre mice show resistance to ovariectomy-(OVX) induced bone loss. Thus, our results reveal that RANKL signaling regulates both osteoclasts and osteoblasts by inhibition of osteogenic differentiation of BMSCs and promotion of osteoclastogenesis.
基金N.B.:IHBI ECR grant,Advance Queensland(AQ)Maternity Fund Award from the Queensland Government(DSITI),Young Researcher Award(2017-YR-RoW-9)from Lush(UK)supporting non-animal testing alternatives,National Health and Medical Research Council(NHMRC)Peter Doherty Early Career Research Fellowship(RF)(APP1091734)+5 种基金John Mills Young Investigator Award(YI0715)from the Prostate Cancer Foundation of Australia(PCFA)P.A.T.:Vice Chancellor’s RF(QUT)and AQ RF(QLD)J.A.C.:NHMRC PRFD.W.H.:Humboldt RF,ARC Industrial Transformation Training Center in Additive Biomanufacturing(IC160100026)NHMRC,World Cancer Foundation,National Breast Cancer Foundation,PCFA.D.W.H.,J.A.C.,C.C.N.:Movember Revolutionary Team Award(from Movember and PCFA).APCRC-Qthe Translational Research Institute are supported by grants from the Australian Government
文摘While stromal interactions are essential in cancer adaptation to hormonal therapies,the effects of bone stroma and androgen deprivation on cancer progression in bone are poorly understood.Here,we tissue-engineered and validated an in vitro microtissue model of osteoblastic bone metastases,and used it to study the effects of androgen deprivation in this microenvironment.The model was established by culturing primary human osteoprogenitor cells on melt electrowritten polymer scaffolds,leading to a mineralized osteoblast-derived microtissue containing,in a 3D setting,viable osteoblastic cells,osteocytic cells,and appropriate expression of osteoblast/osteocyte-derived mRNA and proteins,and mineral content.Direct co-culture of androgen receptordependent/ independent cell lines (LNCaP,C4-2B,and PC3) led cancer cells to display functional and molecular features as observed in vivo.Co-cultured cancer cells showed increased affinity to the microtissues,as a function of their bone metastatic potential.Cocultures led to alkaline phosphatase and collagen-I upregulation and sclerostin downregulation,consistent with the clinical marker profile of osteoblastic bone metastases.LNCaP showed a significant adaptive response under androgen deprivation in the microtissues,with the notable appearance of neuroendocrine transdifferentiation features and increased expression of related markers (dopa decarboxylase,enolase 2).Androgen deprivation affected the biology of the metastatic microenvironment with stronger upregulation of androgen receptor,alkaline phosphatase,and dopa decarboxylase,as seen in the transition towards resistance.The unique microtissues engineered here represent a substantial asset to determine the involvement of the human bone microenvironment in prostate cancer progression and response to a therapeutic context in this microenvironment.
基金This study was supported by the National Natural Science Foundation of China(No.81800343).
文摘Amyloid beta(AB)peptide 40 enhances the activation of receptor for advanced glycation end products(RAGE)in immune-inflammatory diseases.RAGE exhibits several ffects in the setting of numerous cardiovascular events.We bypothesized that the Aβ40/RAGE pathway is involved in the osteoblastic differentiation of the valvular interstitial cell(VIC)phenotype,and RAGE knockout intervention could reduce the calcification of aortic valve interstitial cells(AVICs)by inhibiting the extracellular-regulated kinase1/2(ERK 1/2)/nuclear factor kappa-B(NF-kB)signaling pathway.To test this hypothesis,the activation of AB40/RAGE pathway in human calcific AVs was evaluated with immunohistochemical staining.Cultured calcific VIC models were used in vitro.The VICs were stimulated using Aβ40,with or without RAGE small interfering ribonucleic acid(siRNA),and ERK1/2 and NF-κB inhibitors for analysis.Our data revealed that AB40 induced the ERK 1/2/NF-κB signaling pathway and osteoblastic differentiation of AVICs via the RAGE pathway in vitro.
基金the financial support of the project from the National High Technology Research and Development Program of China("863 Program",No. 2012AA020502)
文摘Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.
基金We are grateful for the funding support for this work from the Leo and Anne Albert Charitable Foundation and the Phi Beta Psi Sorority.We deeply appreciate the invaluable contributions of Dr.Nissi Varki,Director,and Laarni Gapuz,Manager,Moores Cancer Center Histology Core.
文摘Objective:Bone metastasis occurs in up to 90%of men with advanced prostate cancer and leads to fractures,severe pain and therapy-resistance.Bone metastases induce a spectrum of types of bone lesions which can respond differently to therapy even within individual prostate cancer patients.Thus,the special environment of the bone makes the disease more complicated and incurable.A model in which bone lesions are reproducibly induced that mirrors the complexity seen in patients would be invaluable for pre-clinical testing of novel treatments.The microstructural changes in the femurs of mice implanted with PCSD1,a new patient-derived xenograft from a surgical prostate cancer bone metastasis specimen,were determined.Methods:Quantitative micro-computed tomography(micro-CT)and histological analyses were performed to evaluate the effects of direct injection of PCSD1 cells or media alone(Control)into the right femurs of Rag2/gc/male mice.Results:Bone lesions formed only in femurs of mice injected with PCSD1 cells.Bone volume(BV)was significantly decreased at the proximal and distal ends of the femurs(p<0.01)whereas BV(p<0.05)and bone shaft diameter(p<0.01)were significantly increased along the femur shaft.Conclusion:PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur,and,in contrast,induced aberrant bone formation leading to osteoblastic lesions along the femur shaft.Therefore,the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion.Our approach can be used to determine if different bone regions support more therapy resistant tumor growth,thus,requiring novel treatments.
基金supported by the NIH (R01 AR52379 & R01 AR49286),U S Army Medical Research and NSBRI
文摘Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,
文摘Carcinosarcomas are rare,malignant,biphasic tumors simultaneously comprising carcinoma and sarcoma in a single tumor.We present an extremely rare case of gastric carcinosarcoma with an osteoblastic component that drastically changed its shape within 2 mo.A 59-year-old male patient presented to the emergency outpatient unit with a complaint of black stool.Gastrointestinal endoscopy showed an ulcerated mass in the cardia of the lesser curvature of the stomach.Biopsy specimens revealed only adenocarcinoma.Two months later,the ulcerated lesion drastically changed its shape into an exophytic tumor.Total gastrectomy was performed.In the resected specimen,the gastric tumor contained both adenocarcinoma and sarcoma components with lace-like osteoid.The patient died 7 mo after the operation,and an autopsy was performed.In the autopsy,widespread metastases were present in the liver,lung,lymph nodes and peritoneum.In this report,we describe a case of gastric carcinosarcoma and presume its tumorigenesis based on the autopsy findings.
基金National Natural Science Foundation of China(No.81190133)Self-Determined and Innovation Research Funds of WUT(No.2012-IV-069)
文摘To investigate the molecular aspects of osteoblastic interactions with β tricalcium phosphate (β-TCP) particles, human osteoblast-like MG-63 cells were cultured with β-TCP particles at a density of 6 mg/mL culture medium for 48 h. Then, the mRNA expression of selected genes were quantified by real-time polymerase chain reaction (PCR), including the attachment-related genes (α integrin and actin), the proliferation-related gene (c-jun), and the osteoblastic markers genes (type I collagen, osteonectin, alkaline phosphatase, RUNX2 and osteoclain). The results showed that β-TCP particles (the average size 809 nm) significantly promote the attachment and the proliferation of MG-63 cells, and slightly enhance the osteoblastic differentiation based on the analyses of the related genes expression. This study provided scientific evidences to better reveal the underlines of functions of β-TCP in bone repair.
文摘Biointerface design can greatly influence cell behavior. Therefore, in this study we examined the effects of three surface characteristics, roughness, chemistry, and wettability, on osteoblastic cell differentiation. We examined osteoblastic differentiation on titanium (Ti) samples with four levels of roughness (average roughness: 148.6 ± 23.1, 42 ± 6.2, 14.3 ± 5.5, 7.2 ± 1.6 nm) with or without a nanolayer coating of polydopamine (PDA). In vitro osteogenic differentiation was evaluated by quantifying alkaline phosphatase (AP) activity of human fetal preosteoblastic (hFOB 1.19) cells. The change in surface chemistry of Ti samples as a result of PDA coating was assessed by XPS analysis and water contact angle measurement. Results demonstrated that PDA treated samples were more hydrophilic, compared to untreated samples, and this was substrate roughness independent. Moreover, with the exception of the substrate with an oriented texture of surface nanotopography (RTi-4), the presence of a PDA nanolayer increased AP activity independent of substrate roughness. Our results suggest that surface chemistry and wettability, induced by a PDA nanolayer coating, had a greater effect on osteoblastic differentiation than did surface roughness.
基金supported by the National Natural Science Foundation of China(No.81202865)
文摘There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy(HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase(ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor(PR) and PS2 m RNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.
文摘It is found that the drugs for nourishing yin to reduce pathogenic fire can significantly down-regulate,and the drugs for tonifying the kidney to replenish essence can up-regulate mRNA expression of the hypothalamic GnRH,pituitary FSH,LH and osteoblastic BGP,indicating that the Chinese drugs for tonifying the kidney can regulate gene expression of the hypothalamic GnRH,pituitary FSH,LH,and osteoblastic BGP,which is possibly one of the main mechanisms of the Chinese drug for tonifying the kidney,regulating ephebic development process and improving skeletal development in sexual precocity children.
文摘Introduction: Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of skeletal malformations and progressive extraskeletal ossification. Patients and Methods: In the present study, we present a case of FOP with marked progressive ossification of extraskeletal tissues. We investigated whether soluble factors in serum would affect the osteoblast phenotype by examining the effects of serum from this patient and control subjects on mouse osteoblastic MC3T3-E1 cells. Results: The clinical findings of this patient were compatible with FOP, and direct sequence analysis of genomic DNA demonstrated the presence of a heterozygous 617G> A (R206H) mutation of activin type 1 receptor (ACVR1). Serum from the FOP patient enhanced the level of alkaline phosphatase (ALP) in Western blotting, compared with serum from the control, in MC3T3-E1 cells. Moreover, serum from the FOP patient enhanced the levels of ALP, osteocalcin and bone morphogenetic protein-2 mRNA in these cells. Conclusion: We presented a case of FOP with progressive ossification in extra-skeletal tissues with ACVR1 mutation. The present data suggest that the serum from this patient includes some soluble factors, which might enhance the osteoblast differentiation and BMP-2 expression in mouse osteoblastic cells.
文摘Ma et al recently reported in the World Journal of Diabetes that ferroptosis occurs in osteoblasts under high glucose conditions,reflecting diabetes pathology.This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1(PCBP1).Additionally,Ma et al used a lentivirus infection system to express PCBP1.As the authors’method of administration can be improved in terms of stability and cost,we propose delivering PCBP1 to treat type 2 diabetic osteoporosis by encapsulating it in protein nanoparticles.First,PCBP1 is small and druggable.Second,intravenous injection can help deliver PCBP1 across the mucosa while avoiding acid and enzyme-catalyzed degradation.Furthermore,incorporating PCBP1 into nanoparticles prevents its interaction with water or oxygen and protects PCBP1’s structure and activity.Notably,the safety of the protein materials and the industrialization techniques for large-scale production of protein nanoparticles must be comprehensively investigated before clinical application.
基金financial support from National Key Research and Development Program of China(Grant No.2018YFC2002303)National Natural Science Foundation of China(Grant No.51672304)International Partnership Program of Chinese Academy of Science(Grant No.GJHZ1760).
文摘Osteoporosis bone defect is a refractory orthopaedic disease which characterized by impaired bone quality and bone regeneration capacity.Current therapies,including antiosteoporosis drugs and artificial bone grafts,are not always satisfactory.Herein,a strontium-substituted calcium phosphate silicate bioactive ceramic(Sr-CPS)was fabricated.In the present study,the extracts of Sr-CPS were prepared for in vitro study and Sr-CPS scaffolds were used for in vivo study.The cytocompatibility,osteogenic and osteoclastogenic properties of Sr-CPS extracts were characterized in comparison to CPS.Molecular mechanisms were also evaluated by Western blot.Sr-CPS extracts were found to promote osteogenesis by upregulating Wnt/β-catenin signal pathways and inhibit osteoclastogenesis through downregulating NF-κB signal pathway.In vivo,micro-CT,histological and histomorphometric observation were conducted after 8 weeks of implantation to evaluate the bone formation using calvarial defects model in ovariectomized rats.Compared with CPS,Sr-CPS significantly promoted critical sized ovariectomy(OVX)calvarial defects healing.Among all the samples,Sr-10 showed the best performance due to a perfect match of bone formation and scaffold degradation rates.Overall,the present study demonstrated that Sr-CPS ceramic can dually modulate both bone formation and resorption,which might be a promising candidate for the reconstruction of osteoporotic bone defect.
基金supported by the National Natural Science Foundation of China(No.81930067)Key Project for Clinical Innovation of AMU(China)(No.CX2019LC107).
文摘More than 50%of prostate cancer(PCa)patients have bone metastasis with osteo-blastic lesions.MiR-18a-5p is associated with the development and metastasis of PCa,but it remains unclear whether it is involved in osteoblastic lesions.We first found that miR-18a-5p was highly expressed in the bone microenvironment of patients with PCa bone metastases.To address how miR-18a-5p affects PCa osteoblastic lesions,antagonizing miR-18a-5p in PCa cells or pre-osteoblasts inhibited osteoblast differentiation in vitro.Moreover,injection of PCa cells with miR-18a-5p inhibition improved bone biomechanical properties and bone mineral mass in vivo.Furthermore,miR-18a-5p was transferred to osteoblasts by exosomes derived from PCa cells and targeted the Hist1h2bc gene,resulting in Ctnnb1 up-regulation in the Wnt/β-catenin signaling pathway.Translationally,antagomir-18a-5p significantly improved bone biomechanical properties and alleviated sclerotic lesions from osteoblastic me-tastases in BALB/c nude mice.These data suggest that inhibition of exosome-delivered miR-18a-5p ameliorates PCa-induced osteoblastic lesions.
基金The study was supported by the Natural Science Foundation Grants(No.81671826,No.81271702 and No.31600765)Sichuan Province Miaozi Project(2016RZ0032)Sichuan University Start-up Funding(2015SCU11041).
文摘While both induction culture media and matrix have been reported to regulate the stem cell fate,little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms.To this aim,we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes,which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages,respectively,and cultured them with osteogenic,chondrogenic and normal culture media,respectively.A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion,cytoskeleton organization,proliferation,and in particular differentiation into the osteoblastic and chondrocytic lineages.The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did.The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study,where canonical Wnt-b-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation.Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations,but also have important implications in biomaterial design for tissue engineering applications.
基金supported by National Natural Science Foundation of China(grant numbers 82072523 to Zhiyong Hou)Postdoctoral program of Clinical medicine of Hebei Medical University(grant numbers PD2023012 to Sujuan Xu)+2 种基金Excellent postdoctoral research funding project of Hebei Province(grant numbers B2023005011 to Sujuan Xu)The 16th special grant of China Postdoctoral Science Foundation(grant numbers 2023T160182 to Sujuan Xu)Natural Science Foundation of Hebei Province,China(grant numbers H2023206230 to Yingchao Yin,H2024206186 to Sujuan Xu).
文摘The delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts maintains bone homeostasis.Nuclear receptors(NRs)are now understood to be crucial in bone physiology and pathology.However,the function of the Farnesoid X receptor(FXR),a member of the NR family,in regulating bone homeostasis remains incompletely understood.In this study,in vitro and in vivo models revealed delayed bone development and an osteoporosis phenotype in mice lacking FXR in bone marrow mesenchymal stem cells(BMSCs)and osteoblasts due to impaired osteoblast differentiation.Mechanistically,FXR could stabilize RUNX2 by inhibiting Thoc6-mediated ubiquitination,thereby promoting osteogenic activity in BMSCs.Moreover,activated FXR could directly bind to the Thoc6 promoter,suppressing its expression.The interaction between RUNX2 and Thoc6 was mediated by the Runt domain of RUNX2 and the WD repeat of Thoc6.Additionally,Obeticholic acid(OCA),an orally available FXR agonist,could ameliorate bone loss in an ovariectomy(OVX)-induced osteoporotic mouse model.Taken together,our findings suggest that FXR plays pivotal roles in osteoblast differentiation by regulating RUNX2 stability and that targeting FXR may be a promising therapeutic approach for osteoporosis.
基金supported by grants from National Natural Science Foundation of China(82272444,81972031,81972033)China Postdoctoral Science Foundation(2022M722382)Tianjin Key Medical Discipline(Specialty)Construction Project(TJYXZDXK-032A)。
文摘Neural EGFL-like 2(NELL2)is a secreted protein known for its regulatory functions in the nervous and reproductive systems,yet its role in bone biology remains unexplored.In this study,we observed that NELL2 was diminished in the bone of aged and ovariectomized(OVX)mice,as well as in the serum of osteopenia and osteoporosis patients.In vitro loss-of-function and gain-offunction studies revealed that NELL2 facilitated osteoblast differentiation and impeded adipocyte differentiation from stromal progenitor cells.In vivo studies further demonstrated that the deletion of NELL2 in preosteoblasts resulted in decreased cancellous bone mass in mice.Mechanistically,NELL2 interacted with the FNI-type domain located at the C-terminus of Fibronectin 1(Fn1).Moreover,we found that NELL2 activated the focal adhesion kinase(FAK)/AKT signaling pathway through Fn1/integrinβ1(ITGB1),leading to the promotion of osteogenesis and the inhibition of adipogenesis.Notably,administration of NELL2-AAV was found to ameliorate bone loss in OVX mice.These findings underscore the significant role of NELL2 in osteoblast differentiation and bone homeostasis,suggesting its potential as a therapeutic target for managing osteoporosis.
基金supported by the National Natural Science Foundation of China(Grant Nos:82374475 and 82104883,China).
文摘The death of osteoblasts induced by glucocorticoid(GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head(SIONFH).Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH.Isovitexin has demonstrated antioxidant properties,but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.In this study,we analyzed clinical samples obtained from SIONFH patients using proteomic and bioinformatic approaches.