Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bendin...Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.展开更多
By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate wi...By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.展开更多
To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the met...To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.展开更多
The analysis presented here is to study the effect of non-homogeneity on thermally induced vibration of orthotropic visco-elastic rectangular plate of linearly varying thickness. Thermal vibrational behavior of non-ho...The analysis presented here is to study the effect of non-homogeneity on thermally induced vibration of orthotropic visco-elastic rectangular plate of linearly varying thickness. Thermal vibrational behavior of non-homogeneous rectangular plates of variable thickness having clamped boundary conditions on all the four edges is studied. For non–homogeneity of the plate material, density is assumed to vary linearly in one direction. Using the method of separation of variables, the governing differential equation is solved. An approximate but quite convenient frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Time period and deflection at different points for the first two modes of vibration are calculated for various values of temperature gradients, non- homogeneity constant, taper constant and aspect ratio. Comparison studies have been carried out with non-homogeneous visco-elastic rectangular plate to establish the accuracy and versatility.展开更多
A simple model presented here is to study the thermal effect on vibration of non-homogeneous orthotropic visco-elastic rectangular plate of parabolically varying thickness having clamped boundary conditions on all the...A simple model presented here is to study the thermal effect on vibration of non-homogeneous orthotropic visco-elastic rectangular plate of parabolically varying thickness having clamped boundary conditions on all the four edges. For non-homogeneity of the plate material, density is assumed to vary linearly in one direction. Using the separation of variables method, the governing differential equation has been solved for vibration of non-homogeneous orthotropic viscoelastic rectangular plate. An approximate frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Results are calculated for time period and deflection at different points, for the first two modes of vibration, for various values of temperature gradients, non-homogeneity constant, taper constant and aspect ratio and shown by graphs.展开更多
文摘Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction (z-direction),the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given;then introducing the dimensionless variables and three small parameters,the dimensionaless governing equations of the deflection function and stress function are given.
文摘By using “the method of modified two-variable”,“the method of mixing perturbation” and introducing four small parameters,the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied.And the uniformly valid asymptotic solution of Nth-order for ε_1 and Mth-order for ε_2 of the deflection functions and stress function are obtained.
文摘To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.
文摘The analysis presented here is to study the effect of non-homogeneity on thermally induced vibration of orthotropic visco-elastic rectangular plate of linearly varying thickness. Thermal vibrational behavior of non-homogeneous rectangular plates of variable thickness having clamped boundary conditions on all the four edges is studied. For non–homogeneity of the plate material, density is assumed to vary linearly in one direction. Using the method of separation of variables, the governing differential equation is solved. An approximate but quite convenient frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Time period and deflection at different points for the first two modes of vibration are calculated for various values of temperature gradients, non- homogeneity constant, taper constant and aspect ratio. Comparison studies have been carried out with non-homogeneous visco-elastic rectangular plate to establish the accuracy and versatility.
文摘A simple model presented here is to study the thermal effect on vibration of non-homogeneous orthotropic visco-elastic rectangular plate of parabolically varying thickness having clamped boundary conditions on all the four edges. For non-homogeneity of the plate material, density is assumed to vary linearly in one direction. Using the separation of variables method, the governing differential equation has been solved for vibration of non-homogeneous orthotropic viscoelastic rectangular plate. An approximate frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Results are calculated for time period and deflection at different points, for the first two modes of vibration, for various values of temperature gradients, non-homogeneity constant, taper constant and aspect ratio and shown by graphs.