Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,...Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,many areas in the world gradually formed unique bamboo buildings,which have become an important local cultural feature.For building structures,joints are the key to ensure structural load transfer.Because of hollow and thin-walled material property of bamboo,the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo,which seriously hinders the development of original bamboo structures.In order to promote the use of raw bamboo,two traditional connection methods in raw bamboo structures are described in this paper firstly,with the advantages and disadvantages of the two methods pointed out.Also,research progress on four categories of raw bamboo building joints is described namely,bolt joints,steel member joints,filler reinforced joints and other types of joints.This work can provide a reference for future research and engineering applications.展开更多
On the basis of the analysis and study of the records of shallow-layer profiles and information from systematic analyses of some cores and their 14C datings, the sediments of Yellow Sea trough since the final slage th...On the basis of the analysis and study of the records of shallow-layer profiles and information from systematic analyses of some cores and their 14C datings, the sediments of Yellow Sea trough since the final slage the Late Pleistocene are found to have the following features. On the south slope of the trough, it is probably composed of island-shelf de posits. On the mouth of the trough, it is made up of eolian dunes and its deposits. In the centra! bottom region of the trough where intense desertization occurred in the early stage of the regression, there are parallel oblique beddings in the strata known as the 'angle of repose' texture, which demonstrates that the deposits there are composed of eolian sands. And in the late stage, thin derivative deposits developed in the northern part of the trough. On the north slope of the trough, thick-layer derivative deposits developed. This primary sedimentary pattern still remains unchanged since the occurrence of the Holocene transgression.展开更多
As a close relative of ferroelectricity,antiferroelectricity has received a recent resurgence of interest driven by technological aspirations in energy-efficient applications,such as energy storage capacitors,solid-st...As a close relative of ferroelectricity,antiferroelectricity has received a recent resurgence of interest driven by technological aspirations in energy-efficient applications,such as energy storage capacitors,solid-state cooling devices,explosive energy conversion,and displacement transducers.Though prolonged efforts in this area have led to certain progress and the discovery of more than 100 antiferroelectric materials over the last 70 years,some scientific and technological issues remain unresolved.Herein,we provide perspectives on the development of antiferroelectrics for energy storage and conversion applications,as well as a comprehensive understanding of the structural origin of antiferroelectricity and field-induced phase transitions,followed by design strategies for new lead-free antiferroelectrics.We also envision unprecedented challenges in the development of promising antiferroelectric materials that bridge materials design and real applications.Future research in these directions will open up new possibilities in resolving the mystery of antiferroelectricity,provide opportunities for comprehending structure-property correlation and developing antiferroelectric/ferroelectric theories,and suggest an approach to the manipulation of phase transitions for real-world applications.展开更多
We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)&...We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.展开更多
The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- c...The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).展开更多
基金supported by the Natural Science Foundation of Jiang-su Province(No.BK20181402)the National Natural Science Foundation of China(51878354)+2 种基金National Key R&D Program of China,the Open Fund Project from Key Laboratory of Concrete and Pre-stressed Concrete Structure of Ministry of Education(Southeast university)the China Postdoctoral Science Foundation(2015M580382)Jiangsu Postdoctoral Science Foundation Project(1501037A),Qing Lan Project,and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Bamboo is a green construction material in line with sustainable development strategies.The use of raw bamboo in architecture has existed since ancient times.In the long development years of original bamboo buildings,many areas in the world gradually formed unique bamboo buildings,which have become an important local cultural feature.For building structures,joints are the key to ensure structural load transfer.Because of hollow and thin-walled material property of bamboo,the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo,which seriously hinders the development of original bamboo structures.In order to promote the use of raw bamboo,two traditional connection methods in raw bamboo structures are described in this paper firstly,with the advantages and disadvantages of the two methods pointed out.Also,research progress on four categories of raw bamboo building joints is described namely,bolt joints,steel member joints,filler reinforced joints and other types of joints.This work can provide a reference for future research and engineering applications.
基金Project sponsored by the State Natural Sciences Foundation of China
文摘On the basis of the analysis and study of the records of shallow-layer profiles and information from systematic analyses of some cores and their 14C datings, the sediments of Yellow Sea trough since the final slage the Late Pleistocene are found to have the following features. On the south slope of the trough, it is probably composed of island-shelf de posits. On the mouth of the trough, it is made up of eolian dunes and its deposits. In the centra! bottom region of the trough where intense desertization occurred in the early stage of the regression, there are parallel oblique beddings in the strata known as the 'angle of repose' texture, which demonstrates that the deposits there are composed of eolian sands. And in the late stage, thin derivative deposits developed in the northern part of the trough. On the north slope of the trough, thick-layer derivative deposits developed. This primary sedimentary pattern still remains unchanged since the occurrence of the Holocene transgression.
基金the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing:No.06500135)the Alexander von Humboldt Foundation for financial support+3 种基金support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIPNo.2019R1I1A1A01063888)USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineeringthe financial supports of the PolyU Post-Dr Research Grant(No.G-YW5T)from The Hong Kong Polytechnic University。
文摘As a close relative of ferroelectricity,antiferroelectricity has received a recent resurgence of interest driven by technological aspirations in energy-efficient applications,such as energy storage capacitors,solid-state cooling devices,explosive energy conversion,and displacement transducers.Though prolonged efforts in this area have led to certain progress and the discovery of more than 100 antiferroelectric materials over the last 70 years,some scientific and technological issues remain unresolved.Herein,we provide perspectives on the development of antiferroelectrics for energy storage and conversion applications,as well as a comprehensive understanding of the structural origin of antiferroelectricity and field-induced phase transitions,followed by design strategies for new lead-free antiferroelectrics.We also envision unprecedented challenges in the development of promising antiferroelectric materials that bridge materials design and real applications.Future research in these directions will open up new possibilities in resolving the mystery of antiferroelectricity,provide opportunities for comprehending structure-property correlation and developing antiferroelectric/ferroelectric theories,and suggest an approach to the manipulation of phase transitions for real-world applications.
基金National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金Guang Dong Basic and Applied Basic Research Foundation(No.2022A1515010312)Jiangsu Science and Technology Innovation Project for Carbon Peaking and Carbon Neutrality(No.BE2022035)。
文摘We investigated the mixed alkali effect on the thermal properties and elastic response to temperature in the borosilicate glasses system with the composition of 70.65Si O_(2)·21.09B_(2)O_(3)·1.88Al_(2)O_(3)·(6.38-x)Li_(2)O·x Na_(2)O glasses,where x=0.00,1.595,3.19,4.785,and 6.38.Except for the expected positive and negative deviations from linearity for the coefficients of thermal expansion,room temperature E and G,we observed a new mixed alkali efiect on the response of elastic moduli to temperature.Fourier transform infrared spectra were obtained to elucidate the possible structural origin of the mixed alkali efiects.This work provides a valuable insight into the structural and mechanical properties of mixed-alkali borosilicate glasses.
基金the China State Mineral Resources Investigation Program (Grant No.1212011220936)National Science Foundation of China (Grant No.U1403292 41472196)
文摘The Xinyu iron deposit, located in central Jiangxi Province, is one of the most important BIF-type deposits in China. It is hosted in the Late Proterozoic volcanic- sedimentary rocks, which are composed of sericite- chlorite pyhllite, magnetite-bearing chlorite phyllite or schist, magnetite quartzite, and schist (Yu et al., 1989; Zeng et al., 2011).