期刊文献+
共找到1,880篇文章
< 1 2 94 >
每页显示 20 50 100
Real-time origin-destination matrices estimation for urban rail transit network based on structural state-space model 被引量:3
1
作者 姚向明 赵鹏 禹丹丹 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4498-4506,共9页
The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from au... The major objective of this work was to establish a structural state-space model to estimate the dynamic origin-destination(O-D) matrices for urban rail transit network, using in- and out-flows at each station from automatic fare collection(AFC) system as the real time observed passenger flow counts. For lacking of measurable passenger flow information, the proposed model employs priori O-D matrices and travel time distribution from historical travel records in AFC system to establish the dynamic system equations. An arriving rate based on travel time distribution is defined to identify the dynamic interrelations between time-varying O-D flows and observed flows, which greatly decreases the computational complexity and improve the model's applicability for large-scale network. This methodology is tested in a real transit network from Beijing subway network in China through comparing the predicted matrices with the true matrices. Case study results indicate that the proposed model is effective and applicative for estimating dynamic O-D matrices for large-scale rail transit network. 展开更多
关键词 DYNAMIC origin-destination MATRICES estimation sta
在线阅读 下载PDF
Minimum norm method of analyzing ill-conditioned state of design matrix in estimation of parameters 被引量:3
2
作者 LU Xiu-shan OU Ji-kun +1 位作者 SONG Shu-i FENG Zun-de 《中国有色金属学会会刊:英文版》 CSCD 2003年第3期724-728,共5页
The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not.For its shortcoming,a method to measure multi collinearity of a matrix was put forward.The metho... The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not.For its shortcoming,a method to measure multi collinearity of a matrix was put forward.The method is that implement Gram Schmidt orthogonalizing process to column vectors of a design matrix A(αl),then calculate the norms of every vector before and after orthogonalization process and their corresponding ratio,and use the minimum ratio among the group of ratios to measure the multi collinearity of A.According to the corresponding relationship between the multi collinearity and the ill conditioned state of a matrix,the method also studies and offers reference indexes weighing the ill conditioned state of a matrix based on the relative norm.The remarkable characteristics of the method are that the measure of multi collinearity has idiographic geometry meaning and clear lower and upper limit,the size of the measure reflects the multi collinearity of column vectors objectively.It is convenient to study the reason that results in the matrix being multi collinearity and to put forward solving plan according to the method which is summarized as the method of minimum norm and abbreviated as F method. 展开更多
关键词 estimation of parameters multi collinearity of matrix ill conditioned state of matrix norm of vector
在线阅读 下载PDF
A Singular Value Thresholding Based Matrix Completion Method for DOA Estimation in Nonuniform Noise 被引量:1
3
作者 Peiling Wang Jinfeng Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2021年第4期368-376,共9页
Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performa... Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method. 展开更多
关键词 direction-of-arrival estimation nonuniform noise matrix completion
在线阅读 下载PDF
Improved Zero-Dynamics Attack Scheduling With State Estimation
4
作者 Zhe Wang Heng Zhang +1 位作者 Chaoqun Yang Xianghui Cao 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期472-474,共3页
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a... Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1. 展开更多
关键词 change zero dynamic gain matrix target system state estimation SCHEDULING attack signal improved zd state estimates improved zero dynamics attack
在线阅读 下载PDF
Incoherence parameter estimation and multiband fusion based on the novel structure-enhanced spatial spectrum algorithm
5
作者 JIANG Libing ZHENG Shuyu +2 位作者 YANG Qingwei ZHANG Xiaokuan WANG Zhuang 《Journal of Systems Engineering and Electronics》 2025年第4期867-879,共13页
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu... In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data. 展开更多
关键词 multiband fusion incoherence parameter estimation matrix pencil(MP) root-multiple signal classification(Root-MUSIC) covariance matrix.
在线阅读 下载PDF
An Online Exploratory Maximum Likelihood Estimation Approach to Adaptive Kalman Filtering
6
作者 Jiajun Cheng Haonan Chen +2 位作者 Zhirui Xue Yulong Huang Yonggang Zhang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期228-254,共27页
Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when ... Over the past few decades, numerous adaptive Kalman filters(AKFs) have been proposed. However, achieving online estimation with both high estimation accuracy and fast convergence speed is challenging, especially when both the process noise and measurement noise covariance matrices are relatively inaccurate. Maximum likelihood estimation(MLE) possesses the potential to achieve this goal, since its theoretical accuracy is guaranteed by asymptotic optimality and the convergence speed is fast due to weak dependence on accurate state estimation.Unfortunately, the maximum likelihood cost function is so intricate that the existing MLE methods can only simply ignore all historical measurement information to achieve online estimation,which cannot adequately realize the potential of MLE. In order to design online MLE-based AKFs with high estimation accuracy and fast convergence speed, an online exploratory MLE approach is proposed, based on which a mini-batch coordinate descent noise covariance matrix estimation framework is developed. In this framework, the maximum likelihood cost function is simplified for online estimation with fewer and simpler terms which are selected in a mini-batch and calculated with a backtracking method. This maximum likelihood cost function is sidestepped and solved by exploring possible estimated noise covariance matrices adaptively while the historical measurement information is adequately utilized. Furthermore, four specific algorithms are derived under this framework to meet different practical requirements in terms of convergence speed, estimation accuracy,and calculation load. Abundant simulations and experiments are carried out to verify the validity and superiority of the proposed algorithms as compared with existing state-of-the-art AKFs. 展开更多
关键词 Adaptive Kalman filtering coordinate descent maximum likelihood estimation mini-batch optimization unknown noise covariance matrix
在线阅读 下载PDF
An algorithm to solve autocorrelation matrix singular value based on SNR estimation
7
作者 赵继军 张曙光 赵文玉 《Optoelectronics Letters》 EI 2009年第1期41-44,共4页
SNR estimation of communication signals is important to improve demodulation performance and channel quality of communication system,thus it is an important research issue of communication field.According to the core ... SNR estimation of communication signals is important to improve demodulation performance and channel quality of communication system,thus it is an important research issue of communication field.According to the core problem of autocorrelation matrix singular value in SNR estimation process,through making use of householder transforming autocorrelation matrix into tridiagonal matrix,and by using the relation of corresponding characteristic equation coefficients and singular value,a numerical algorithm is gi... 展开更多
关键词 Acoustic intensity ALGORITHMS Channel estimation Communication systems Correlation detectors estimation matrix algebra
原文传递
Two Stage Estimation and Its Covariance Matrix in Multivariate Seemingly Unrelated Regression System
8
作者 WANG Shi-qing YANG qiao LIU fa-gui 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第3期397-401,共5页
Multivariate seemingly unrelated regression system is raised first and the two stage estimation and its covariance matrix are given. The results of the literatures[1-5] are extended in this paper.
关键词 multivariate seemingly unrelated regression system two stage estimation covariance matrix unrestricted estimator
在线阅读 下载PDF
Robust estimation of time-dependent precision matrix with application to the cryptocurrency market
9
作者 Paola Stolfi Mauro Bernardi Davide Vergni 《Financial Innovation》 2022年第1期1313-1337,共25页
Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio select... Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature. 展开更多
关键词 Time-varying models Robust methods Kernel estimation Precision matrix DIVERGENCE
在线阅读 下载PDF
Reduced-complexity multiple parameters estimation via toeplitz matrix triple iteration reconstruction with bistatic MIMO radar
10
作者 Chenghong ZHAN Guoping HU +2 位作者 Junpeng SHI Fangzheng ZHAO Hao ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期482-495,共14页
In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovative... In this advanced exploration, we focus on multiple parameters estimation in bistatic Multiple-Input Multiple-Output(MIMO) radar systems, a crucial technique for target localization and imaging. Our research innovatively addresses the joint estimation of the Direction of Departure(DOD), Direction of Arrival(DOA), and Doppler frequency for incoherent targets. We propose a novel approach that significantly reduces computational complexity by utilizing the TemporalSpatial Nested Sampling Model(TSNSM). Our methodology begins with a multi-linear mapping mechanism to efficiently eliminate unnecessary virtual Degrees of Freedom(DOFs) and reorganize the remaining ones. We then employ the Toeplitz matrix triple iteration reconstruction method, surpassing the traditional Temporal-Spatial Smoothing Window(TSSW) approach, to mitigate the single snapshot effect and reduce computational demands. We further refine the highdimensional ESPRIT algorithm for joint estimation of DOD, DOA, and Doppler frequency, eliminating the need for additional parameter pairing. Moreover, we meticulously derive the Cramér-Rao Bound(CRB) for the TSNSM. This signal model allows for a second expansion of DOFs in time and space domains, achieving high precision in target angle and Doppler frequency estimation with low computational complexity. Our adaptable algorithm is validated through simulations and is suitable for sparse array MIMO radars with various structures, ensuring higher precision in parameter estimation with less complexity burden. 展开更多
关键词 MIMO Radar Multipleparameters estimation Temporal-spatial Nested Sampling Multi-linear mapping mechanism Toeplitz matrix triple iteration reconstruction Reduce computational complexity
原文传递
Mixing matrix estimation of underdetermined blind source separation based on the linear aggregation characteristic of observation signals
11
作者 温江涛 Zhao Qianyun Sun Jiedi 《High Technology Letters》 EI CAS 2016年第1期82-89,共8页
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b... Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm. 展开更多
关键词 underdetermined blind source separation (UBSS) sparse component analysis(SCA) mixing matrix estimation generalized Gaussian distribution (GGD) linear aggregation
在线阅读 下载PDF
Random Weighting Estimation Method for Dynamic Navigation Positioning 被引量:14
12
作者 GAO Shesheng GAO Yi +1 位作者 ZHONG Yongmin WEI Wenhui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第3期318-323,共6页
This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises... This paper presents a new random weighting estimation method for dynamic navigation positioning. This method adopts the concept of random weighting estimation to estimate the covariance matrices of system state noises and observation noises for controlling the disturbances of singular observations and the kinematic model errors. It satisfies the practical requirements of the residual vector and innovation vector to sufficiently utilize observation information, thus weakening the disturbing effect of the kinematic model error and observation model error on the state parameter estimation. Theories and algorithms of random weighting estimation are established for estimating the covariance matrices of observation residual vectors and innovation vec- tors. This random weighting estimation method provides an effective solution for improving the positioning accuracy in dynamic navigation. Experimental results show that compared with the Kalman filtering, the extended Kalman filtering and the adaptive windowing filtering, the proposed method can adaptively determine the covariance matrices of observation error and state error, effectively resist the disturbances caused by system error and observation error, and significantly improve the positioning accu- racy for dynamic navigation. 展开更多
关键词 estimation NAVIGATION ERROR random weighting estimation dynamic navigation positioning covariance matrix kinematic model error observation model error
原文传递
Krein Space-based H∞Fault Estimation for Linear Discrete Time-varying Systems 被引量:14
13
作者 ZHONG Mai-Ying LIU Shuai ZHAO Hui-Hong 《自动化学报》 EI CSCD 北大核心 2008年第12期1529-1533,共5页
This paper deals with the problem of Hoo fault estimation for a class of linear discrete time-varying systems with L2-norm bounded unknown input.The main contribution is the development of a new Krein space-based appr... This paper deals with the problem of Hoo fault estimation for a class of linear discrete time-varying systems with L2-norm bounded unknown input.The main contribution is the development of a new Krein space-based approach to H∞fault estimation.The problem of H∞fault estimation is firstly equated to the minimum of a scalar quadratic form.Then,by introducing a corresponding system in Krein space,a sufficient and necessary condition on the existence of an H∞fault estimator is derived and a solution to its parameter matrices is obtained in terms of matrix Riccati equation.Finally,two numerical examples are given to demonstrate the efficiency of the proposed method. 展开更多
关键词 H∞fault estimation Krein space Kalman filtering matrix Riccati equation
在线阅读 下载PDF
THE SUPERIORITY OF EMPIRICAL BAYES ESTIMATION OF PARAMETERS IN PARTITIONED NORMAL LINEAR MODEL 被引量:4
14
作者 张伟平 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期955-962,共8页
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares... In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion. 展开更多
关键词 Partitioned linear model empirical Bayes estimator least-squares estimator mean square error matrix
在线阅读 下载PDF
Novel algorithm on DOA estimation for correlated sources under complex symmetric Toeplitz noise 被引量:2
15
作者 Wang Kai Zhang Yongshun Shi Dan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期902-906,共5页
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition... To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method. 展开更多
关键词 DOA estimation coherent source differencing toeplitz matrix propagator method.
在线阅读 下载PDF
Rotation Estimation for Mobile Robot Based on Single-axis Gyroscope and Monocular Camera 被引量:2
16
作者 Yang, Ke-Hu Yu, Wen-Sheng Ji, Xiao-Qiang 《International Journal of Automation and computing》 EI 2012年第3期292-298,共7页
The rotation matrix estimation problem is a keypoint for mobile robot localization, navigation, and control. Based on the quaternion theory and the epipolar geometry, an extended Kalman filter (EKF) algorithm is propo... The rotation matrix estimation problem is a keypoint for mobile robot localization, navigation, and control. Based on the quaternion theory and the epipolar geometry, an extended Kalman filter (EKF) algorithm is proposed to estimate the rotation matrix by using a single-axis gyroscope and the image points correspondence from a monocular camera. The experimental results show that the precision of mobile robot s yaw angle estimated by the proposed EKF algorithm is much better than the results given by the image-only and gyroscope-only method, which demonstrates that our method is a preferable way to estimate the rotation for the autonomous mobile robot applications. 展开更多
关键词 Rotation matrix estimation QUATERNION extended Kalman filter (EKF) monocular camera gyroscope.
原文传递
IMPROVED ESTIMATES OF THE COVARIANCE MATRIX IN GENERAL LINEAR MIXED MODELS 被引量:1
17
作者 叶仁道 王松桂 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1115-1124,共10页
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ... In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations. 展开更多
关键词 Covariance matrix shrinkage estimator linear mixed model EIGENVALUE
在线阅读 下载PDF
Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network 被引量:4
18
作者 CHEN Ying WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1354-1363,共10页
Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face ... Higher-order statistics based approaches and signal sparseness based approaches have emerged in recent decades to resolve the underdetermined direction-of-arrival(DOA)estimation problem.These model-based methods face great challenges in practical applications due to high computational complexity and dependence on ideal assumptions.This paper presents an effective DOA estimation approach based on a deep residual network(DRN)for the underdetermined case.We first extract an input feature from a new matrix calculated by stacking several covariance matrices corresponding to different time delays.We then provide the input feature to the trained DRN to construct the super resolution spectrum.The DRN learns the mapping relationship between the input feature and the spatial spectrum by training.The proposed approach is superior to existing model-based estimation methods in terms of calculation efficiency,independence of source sparseness and adaptive capacity to non-ideal conditions(e.g.,low signal to noise ratio,short bit sequence).Simulations demonstrate the validity and strong performance of the proposed algorithm on both overdetermined and underdetermined cases. 展开更多
关键词 direction-of-arrival(DOA)estimation underdetermined condition deep residual network(DRN) time delay covariance matrix
在线阅读 下载PDF
Nonsynchronized state estimation of uncertain discrete-time piecewise affine systems 被引量:1
19
作者 Jianbin QIU Gang FENG Huijun GAO 《控制理论与应用(英文版)》 EI 2010年第3期286-292,共7页
This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so t... This paper investigates the problem of robust H-infinity state estimation for a class of uncertain discretetime piecewise affine systems where state space instead of measurable output space partitions are assumed so that the filter implementation may not be synchronized with plant state trajectory transitions. Based on a piecewise quadratic Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques, two different approaches are developed to the robust filtering design for the underlying piecewise affine systems. It is shown that the filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches. 展开更多
关键词 Piecewise affine systems State estimation Linear fractional uncertainties Linear matrix inequality
在线阅读 下载PDF
Improved results on state estimation for neural networks with time-varying delays 被引量:1
20
作者 Tao LI 1 , Shumin FEI 2 , Hong LU 2 (1.School of Instrument Science & Engineering, Southeast University, Nanjing Jiangsu 210096, China 2.Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing Jiangsu 210096, China) 《控制理论与应用(英文版)》 EI 2010年第2期215-221,共7页
In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an im... In this paper, some improved results on the state estimation problem for recurrent neural networks with both time-varying and distributed time-varying delays are presented. Through available output measurements, an improved delay-dependent criterion is established to estimate the neuron states such that the dynamics of the estimation error is globally exponentially stable, and the derivative of time-delay being less than 1 is removed, which generalize the existent methods. Finally, two illustrative examples are given to demonstrate the effectiveness of the proposed results. 展开更多
关键词 Exponential state estimator Recurrent neural networks Exponential stability Time-varying delays Linear matrix inequality (LMI)
在线阅读 下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部