In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and...In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications.展开更多
The unique arrangement of panels and folds in origami structures provides distinct mechanical properties,such as the ability to achieve multiple stable states,reconfigure shapes,and adjust performance.However,combinin...The unique arrangement of panels and folds in origami structures provides distinct mechanical properties,such as the ability to achieve multiple stable states,reconfigure shapes,and adjust performance.However,combining movement and control functions into a simple yet efficient origami-based system remains a challenge.This study introduces a practical and efficient bistable origami mechanism,realized through lightweight and tailored designs in two bio-inspired applications.The mechanism is constructed from two thin materials:a PET sheet with precisely cut flexible hinges and a pre-tensioned elastic band.Its mechanical behavior is studied using nonlinear spring models.These components can be rearranged to create new bistable structures,enabling the integration of movement and partial control features.Inspired by natural systems,the mechanism is applied to two examples:a passive origami gripper that can quickly and precisely grasp moving objects in less than 100 ms,and an active magnetic-driven fish tail capable of high-speed swimming in multiple modes,reaching a maximum straight-line speed of 3.35 body lengths per second and a turning speed of 2.3 radians per second.This bistable origami mechanism highlights its potential for flexible design and high performance,offering useful insights for developing origami-based robotic systems.展开更多
Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced ...Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced origami patterns,we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization.The bar-and-hinge model is employed for the nonlinear structural analysis,added with a displacement perturbation strategy to initiate out-of-plane buckling.Borrowing ideas from topology optimization,a continuous crease indicator is introduced as the design variable to indicate the state of a crease,which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties.Minimizing the structural strain energy with a crease length constraint,we are able to evolve a thin sheet into an origami structure with an optimized crease pattern.Two examples with different initial setups are illustrated,demonstrating the effectiveness and feasibility of the method.展开更多
Compared with the propulsion mode using the fluctuation or swing of fins,the water-jet propulsion of cephalopods has attracted much attention because of its high swimming speed.This paper introduces a squid-like under...Compared with the propulsion mode using the fluctuation or swing of fins,the water-jet propulsion of cephalopods has attracted much attention because of its high swimming speed.This paper introduces a squid-like underwater thruster based on an origami structure,which can realize water-jet propulsion by changing the shape of its origami structure.At the same time,it is combined with a soft vector nozzle driven by negative pressure for underwater steering.In addition,a triboelectric sensor(TES)is embedded in the origami structure to monitor the shape change of the thruster in real time.The kinematics model of the origami structure is established,and the dihedral angle B_(0)^(4),which can be used to characterize the unique shape of the thruster,is put forward.The dihedral angle B_(0)^(4)is monitored by the TES so that the shape change of the thruster can be feedback in real-time.Prototypes of the thruster and vector nozzle were fabricated,and the maximum error of TES in monitoring the shape of the thruster was less than 4.4%.At the same time,an underwater test platform was built to test the thruster’s propulsion performance and the vector nozzle’s deflection effect.展开更多
Origami structures provide functional advantages to rigid electronics through geometric transformations.However,the transformations involved in folding and deployment cause stress concentration on flexure hinges of or...Origami structures provide functional advantages to rigid electronics through geometric transformations.However,the transformations involved in folding and deployment cause stress concentration on flexure hinges of origami structure,triggering electronic malfunction.Here,we report origami electronics based on a fiber-reinforced electronic composite.A thin PEDOT:PSS-based electronic composite minimizes stress during folding without electrode damage.Nylon is embedded in this foldable composite and,despite being thin and flexible for folding,provides high tensile resistance to prevent plastic deformation and tearing under tension.This strategy enables the creation of flexure hinges for origami electronics that maintain mechanical and electrical stability under repeated transformations.Origami electronics that integrate the high-durability composite can be used in display applications supporting 25-fold compression with the Flasher origami structure and 2D-to-3D deployment with the Kresling origami structure.The ability of origami electronics to withstand bending and tensile stress enables shape-reconfigurable displays requiring repeated reconfiguration across multiple hinges.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12302151 and 52105575)the BIT Research and Innovation Promoting Project(Grant No.2023YCXY049)+2 种基金the Fundamental Research Funds for the Central Universities(Grant No.QTZX23063)the Aeronautical Science Foundation of China(Grant No.2022Z073081001)the Open Research Funds of State Key Laboratory of Intelligent Manufacturing Equipment and Technology(Grant No.IMETKF2024008).
文摘In this paper,a liquid-solid origami composite design is proposed for the improvement of impact resistance.Employing this design strategy,Kresling origami composite structures with different fillings were designed and fabricated,namely air,water,and shear thickening fluid(STF).Quasi-static compression and drop-weight impact experiments were carried out to compare and reveal the static and dynamic mechanical behavior of these structures.The results from drop-weight impact experiments demonstrated that the solid-liquid Kresling origami composite structures exhibited superior yield strength and reduced peak force when compared to their empty counterparts.Notably,the Kresling origami structures filled with STF exhibited significantly heightened yield strength and reduced peak force.For example,at an impact velocity of 3 m/s,the yield strength of single-layer STF-filled Kresling origami structures increased by 772.7%and the peak force decreased by 68.6%.This liquid-solid origami composite design holds the potential to advance the application of origami structures in critical areas such as aerospace,intelligent protection and other important fields.The demonstrated improvements in impact resistance underscore the practical viability of this approach in enhancing structural performance for a range of applications.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant CSA-TS202404in part by the National Natural Science Foundation of China under Grant 12172226.
文摘The unique arrangement of panels and folds in origami structures provides distinct mechanical properties,such as the ability to achieve multiple stable states,reconfigure shapes,and adjust performance.However,combining movement and control functions into a simple yet efficient origami-based system remains a challenge.This study introduces a practical and efficient bistable origami mechanism,realized through lightweight and tailored designs in two bio-inspired applications.The mechanism is constructed from two thin materials:a PET sheet with precisely cut flexible hinges and a pre-tensioned elastic band.Its mechanical behavior is studied using nonlinear spring models.These components can be rearranged to create new bistable structures,enabling the integration of movement and partial control features.Inspired by natural systems,the mechanism is applied to two examples:a passive origami gripper that can quickly and precisely grasp moving objects in less than 100 ms,and an active magnetic-driven fish tail capable of high-speed swimming in multiple modes,reaching a maximum straight-line speed of 3.35 body lengths per second and a turning speed of 2.3 radians per second.This bistable origami mechanism highlights its potential for flexible design and high performance,offering useful insights for developing origami-based robotic systems.
基金National Key Research and Development Program of China(2020YFE0204200,2022YFB4701900)National Natural Science Foundation of China(11988102,12202008)Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-03-05).
文摘Instability-induced wrinkle patterns of thin sheets are ubiquitous in nature,which often result in origami-like patterns that provide inspiration for the engineering of origami designs.Inspired by instability-induced origami patterns,we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization.The bar-and-hinge model is employed for the nonlinear structural analysis,added with a displacement perturbation strategy to initiate out-of-plane buckling.Borrowing ideas from topology optimization,a continuous crease indicator is introduced as the design variable to indicate the state of a crease,which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties.Minimizing the structural strain energy with a crease length constraint,we are able to evolve a thin sheet into an origami structure with an optimized crease pattern.Two examples with different initial setups are illustrated,demonstrating the effectiveness and feasibility of the method.
文摘Compared with the propulsion mode using the fluctuation or swing of fins,the water-jet propulsion of cephalopods has attracted much attention because of its high swimming speed.This paper introduces a squid-like underwater thruster based on an origami structure,which can realize water-jet propulsion by changing the shape of its origami structure.At the same time,it is combined with a soft vector nozzle driven by negative pressure for underwater steering.In addition,a triboelectric sensor(TES)is embedded in the origami structure to monitor the shape change of the thruster in real time.The kinematics model of the origami structure is established,and the dihedral angle B_(0)^(4),which can be used to characterize the unique shape of the thruster,is put forward.The dihedral angle B_(0)^(4)is monitored by the TES so that the shape change of the thruster can be feedback in real-time.Prototypes of the thruster and vector nozzle were fabricated,and the maximum error of TES in monitoring the shape of the thruster was less than 4.4%.At the same time,an underwater test platform was built to test the thruster’s propulsion performance and the vector nozzle’s deflection effect.
基金support from the Ajou University research fundsupported by funding from the NRF of Korea(grant nos.RS-2023-00277110,RS-2023-00271830,RS-2024-00403639,RS-2024-00466111,and RS-2024-00411660)supported by Samsung Display(grant number:S-2025-C1462-00002).
文摘Origami structures provide functional advantages to rigid electronics through geometric transformations.However,the transformations involved in folding and deployment cause stress concentration on flexure hinges of origami structure,triggering electronic malfunction.Here,we report origami electronics based on a fiber-reinforced electronic composite.A thin PEDOT:PSS-based electronic composite minimizes stress during folding without electrode damage.Nylon is embedded in this foldable composite and,despite being thin and flexible for folding,provides high tensile resistance to prevent plastic deformation and tearing under tension.This strategy enables the creation of flexure hinges for origami electronics that maintain mechanical and electrical stability under repeated transformations.Origami electronics that integrate the high-durability composite can be used in display applications supporting 25-fold compression with the Flasher origami structure and 2D-to-3D deployment with the Kresling origami structure.The ability of origami electronics to withstand bending and tensile stress enables shape-reconfigurable displays requiring repeated reconfiguration across multiple hinges.