Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either ...Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers,leading to increased computational demand and reduced detection speeds.In this study,we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images.For the internal opti-mization,we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks.The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer.For the external optimiza-tion,we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes.Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods.展开更多
Metal organic frameworks(MOFs)has broad application prospect in separation,catalysis,and adsorption.By a facile green method,we successfully fabricated prGO@cHKUST-1 composite membrane with the modification of dopamin...Metal organic frameworks(MOFs)has broad application prospect in separation,catalysis,and adsorption.By a facile green method,we successfully fabricated prGO@cHKUST-1 composite membrane with the modification of dopamine and orientated growth of MOFs.Mg/AI-layered double hydroxides(Mg/Al-LDHs)was used as a modulator to obtain cubic HKUST-1(cHKUST-1)with excellent morphology and special properties.Scanning Electron Microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)etc.characte rization illustrated successful synthesis of cHKUST-1 and composite membranes.Cubic HKUST-1 can tune the inter-layer spacing of graphene oxide(GO)leading increase in hydrophilicity and flux of the membrane.Meanwhile,the reduction effect of PDA and intercalation effect of MOFs could change the stacked way of GO layers,forming several fuzzy pores and more active sites on membrane surface.The prGO@cHKUST-1 membrane has an excellent rejection for methylene blue(MB)(99.5%)and Congo red(CR)(71.2%).Moreover,the modified membra ne exhibited 10 and 5 times higher permeation flux than that of original GO membrane and prGO membrane,respectively.Thus,using orientated growth of MOFs to synthesize GO based composite membrane will provide useful insights in ultrahigh permeation flux membranes of dye and oil-water emulsion separation.展开更多
Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-S...Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-SiOx:H layers on different orientated c-Si substrates are fabricated. An optimal effective lifetime(τ(eff)) of 4743 μs and corresponding implied opencircuit voltage(iV(oc)) of 724 mV are obtained on〈100〉-orientated c-Si wafers. While τ(eff) of 2429 μs and iV_(oc) of 699 mV are achieved on 111-orientated substrate. The FTIR and XPS results indicate that the a-SiOx:H network consists of SiOx(Si-rich), Si–OH, Si–O–SiHx, SiO2 ≡ Si–Si, and O3 ≡ Si–Si. A passivation evolution mechanism is proposed to explain the different passivation results on different c-Si wafers. By modulating the a-SiOx:H layer, the planar silicon heterojunction solar cell can achieve an efficiency of 18.15%.展开更多
The effect that the market orientation brings to product innovation performance is reported and the degree of product innovativeness is explored. The interdepartmental integration inside the company is also investigat...The effect that the market orientation brings to product innovation performance is reported and the degree of product innovativeness is explored. The interdepartmental integration inside the company is also investigated. A series of hypotheses were developed aiming at presenting a conceptual framework to clarify how market orientation contributes to product innovation performance-moderated by the degree of product innovativeness and affected by the interdepartmental integration. Survey data from 36 business units were analyzed based on the respondents in the research. The statistic results suggest a substantial positive effect of market orientation on product innovation performance. Under the condition of incremental innovativeness among the samples, the more innovative the product is, the more improvements in product innovation performance would be achieved. A variety of particular interdepartmental integration mechanisms have been certified to lend more supports to establishing market orientation and improving product innovation performance.展开更多
To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the...To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.展开更多
In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-qualit...In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-quality urban development and continuously meet people’s growing aspirations for a better life.Wuhu,in central China’s Anhui Province,has consistently enhanced its urban functions and services to build a modern,people-oriented city that is innovative,livable,beautiful,resilient,and smart.展开更多
Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electrom...Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.展开更多
Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneo...Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneous coagulation casting and sintered by pressureless sintering and hot-isostatic pressure sintering.Zeta potentials and rheological behavior of the slurries,relative densities of green bodies,and orientation and optical properties of sintered bodies were investigated and discussed.The platelet with a high aspect ratio suppressed densification more seriously during sintering than the one with a low aspect ratio.An excellent oriented structure was obtained when 5 wt%platelets with a low aspect ratio were added,and transparent Al_(2)O_(3) ceramics with grains aligned to c-axis were successfully prepared;the in-line transmittance was 78.4%at 600 nm,which is the highest one in the currently reported literature.展开更多
To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting s...To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.展开更多
Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude...Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.展开更多
Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this ...Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this work,the aging-hardening response of AZ80 alloy was effectively enhanced by applying cold-rolling deformation before conducting conventional aging treatment at 200°C.Compared to the directly aged sample,the yield strength of the pre-rolling and aged sample was increased by 35 MPa.Electron microscope examination confirmed that profuse{10¯11}and{10¯11}-{10¯12}twins,consisting of high density of dislocations and stacking faults,were generated by cold rolling.Blocky or ellipsoidal Mg_(17)Al_(12)precipitates formed at the twin boundaries(TBs)during subsequent aging treatment.Crystallographic analysis indicated that the precipitates at{10¯11}TBs always held an identical Potter OR with both the matrix and twin,while the precipitates at{10¯11}-{10¯12}TBs exhibited three different ORs:Burgers OR,Potter OR and P-S OR with either the matrix or the twin.Moreover,recrystallized grains were found inside{10¯11}-{10¯12}double twins after peak-aging at 200°C,implying that precipitation and recrystallization might occur concurrently along TBs at a relatively low temperature.It was speculated that the highly stored energy inside twins and the high elastic energy between the precipitates and twins were driving factors for the occurrence of recrystallization.展开更多
Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(F...Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.展开更多
Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation pr...Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.展开更多
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
Oriented graphene aerogels have limited applica-tions because the flexibility of their graphene sheets and mi-crostructure give them a low skeleton strength,insufficient compression resilience,and poor flexibility.We ...Oriented graphene aerogels have limited applica-tions because the flexibility of their graphene sheets and mi-crostructure give them a low skeleton strength,insufficient compression resilience,and poor flexibility.We report the preparation of novel aerogel materials with a much better per-formance.Using the driving force of graphene oxide(GO)self-assembly andπ-πinteractions,carbon nanotubes(CNTs)were attached to the GO sheets,and an oriented composite carbon skeleton was constructed using“hydro-plastic foam-ing”.The introduction of CNTs significantly increased the strength of the skeleton and gave the aerogel an excellent re-versible compressibility.The innovative use of cold pressing greatly improved the thermal conductivity and flexibility of the aerogel,providing new ideas for the development of high-performance aerogels.Tests show that the obtained graphene composite aerogel has a reversible compressive strain of over 90%and can withstand 500 compression cycles along the direc-tion of pore accumulation.It can endure more than 10000 bending cycles perpendicular to the direction of composite carbon layer stacking,and its in-plane thermal conductivity reaches 64.5 W·m^(-1)·K^(-1).When filled with phase change materials,the high porosity of the carbon skeleton enables the material to have a high phase change filling rate,and its phase change enthalpy is greater than 150 J/g.Thanks to the exceptional flexibility of the carbon skeleton,the macrostructure of phase change materials can be bent as needed to adapt to thermal management scenarios and conform to device shapes.This significantly enhances practical application compatibility,providing flexible support for temperature control and thermal management across diverse device forms.展开更多
A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional s...A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional sensing signals.Simultaneous monitoring of the redox current and color change synchronized with the oxidation state change significantly enhances sen-sitivity and selectivity.This study aimed to elucidate the modification of an indium tin oxide(ITO)electrode with a viologen monolayer with an ordered orientation.Novel methods were developed to immobilize a viologen molecule bearing a car-boxyl group to form assembled monolayers through a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-car-bodiimide with N-hydroxy-succinimide(EDC/NHS).In the two methods of immobilization,one utilizes a two-step process to firstly form an aromatic siloxane base layer and subsequently attach the viologen derivative through an amide linkage by post-amidation.The other employs a direct ester linkage between the hydroxyl groups of the ITO surface and the car-boxyl group of the viologen derivative.The latter method was also applied to immobilize a ferrocenyl group at a very short distance from the ITO surface.Potential-modulated UV-visible transmission absorption spectral measurement techniques with oblique incidence of plane-polarized light were employed to determine the orientation of the longitudinal axis of the reduced form of the viologen.The frequency dependence data of the potential-modulated transmission absorption signals were utilized to analyze the electron transfer kinetics.The performance of the two viologen-modified electrodes was com-pared to that of an ITO modified by post-amidation to the most commonly used base layer prepared with 3-aminopropyl triethoxysilane.展开更多
The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogram...The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.展开更多
After graduating from the China Academy of Arts(Department of Oil Painting)in Hangzhou in 1995,Yang Fudong(1971)moved to Shanghai to work as a graphic designer.Inspired by his daily job in Pudong,he started producing ...After graduating from the China Academy of Arts(Department of Oil Painting)in Hangzhou in 1995,Yang Fudong(1971)moved to Shanghai to work as a graphic designer.Inspired by his daily job in Pudong,he started producing photographic series that closely resembled the advertising campaigns he worked on.Glossy images of stylish young people or dishevelled white collars in highly saturated colours,defined“intellectuals”in cryptic accompanying captions.Conversely,his body of work in black and white,almost entirely shot on 35mm film,portrays a suspended reality out of the historical time:a ghostly dimension akin to a drowsy vigil,a uchronia,an“estranged paradise”-to borrow the title of his earliest film set in Hangzhou.But it is Shanghai’s elusiveness and material relationship with the past that has contributed the most to form Yang’s trademark imagery and aesthetic.What he conjures up in his still and moving images,is a dimension with a distinctive oneiric quality,an“in-between”universe where all the circumstances are justified and have an inner logic,just like in dreams,or just like in the China of his childhood.The research of Yang Fudong is somewhat unique in the universe of contemporary Chinese art and sets him apart from a plethora of artists that have used the video in a much more“didactic”and quotational way.I will illustrate some specific aspects of his black and white body of work,trying to show how a certain self-orientalist trait can be interpreted as strategy to regain narrative agency and bring to the surface a series of removed instances:the main of which being,in my opinion,the fate of Shanghai’s(perhaps of China's Mainland in its ungraspable entirety?)modernity.展开更多
Lead zirconate titanate(PbZr_(x)Ti_(1-x)O_(3),PZT)ferroelectric films possess remarkable characteristics such as high residual polarization,high dielectric constant,and high piezoelectric coefficient and have great ap...Lead zirconate titanate(PbZr_(x)Ti_(1-x)O_(3),PZT)ferroelectric films possess remarkable characteristics such as high residual polarization,high dielectric constant,and high piezoelectric coefficient and have great application prospects in modern electronics,communications,medical care,and military fields.At present,the microstructure changes of PZT ferroelectric thin films have a significant impact on their electrical properties.Therefore,this work summarizes the influences of geometric structure(thickness,porosity),composition structure(Zr/Ti ratio,doping),and grain structure(grain size,grain boundaries,orientation)on the electrical properties of PZT ferroelectric thin films.The results show that the changes in thickness and porosity have a significant impact on the electrical properties of PZT ferroelectric films.Especially,the actual application scenarios and preparation processes determine the required geometric dimensions and structures of PZT ferroelectric films.The Zr/Ti ratio and doping mainly affect the electrical properties by influencing the phase composition of PZT ferroelectric films.The changes in grain size,boundary structure,and orientation dependence mainly have a certain degree of influence on the domain response and domain switching behavior of PZT ferroelectric thin films.In conclusion,different structures have different influence effects on the dielectric,ferroelectric,and piezoelectric properties of PZT ferroelectric films.The way the tiny structure affects how PZT thin films work was shown,helping to guide the design of ferroelectric thin film devices.In order to further study and apply piezoelectric ceramic devices,it is crucial to have an in-depth understanding of the relationship between the structure and performance of piezoelectric ceramic devices.展开更多
We review the genus Paraglenurus van der Weele,1909 in China,and provide a new Chinese record:P.scopifer(Gerstaeker,1888)from Orchid Island(Lanyu).Additionally,we describe a new species of Paraglenurus from South Viet...We review the genus Paraglenurus van der Weele,1909 in China,and provide a new Chinese record:P.scopifer(Gerstaeker,1888)from Orchid Island(Lanyu).Additionally,we describe a new species of Paraglenurus from South Vietnam,i.e.,P.badanoi sp.nov.,which represents the first record of this genus in Indochina.Furthermore,we confirm that the paratypes of P.pumilus(Yang,1997)are actually a distinct new species in the genus Indophanes Banks,1940,i.e.,I.zhiliangi sp.nov.展开更多
基金This work is supported by the National Natural Science Foundation of China[grant numbers 41890820,41771452,41771454,and 41901340]。
文摘Due to the bird’s eye view of remote sensing sensors,the orientational information of an object is a key factor that has to be considered in object detection.To obtain rotating bounding boxes,existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers,leading to increased computational demand and reduced detection speeds.In this study,we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images.For the internal opti-mization,we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks.The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer.For the external optimiza-tion,we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes.Experimental results on the DOTA and HRSC2016 bench-mark datasets show that our proposed method outperforms selected methods.
基金the key projects of science and technology of Science&Technology Department of Sichuan Province(No.2018GZ0421)。
文摘Metal organic frameworks(MOFs)has broad application prospect in separation,catalysis,and adsorption.By a facile green method,we successfully fabricated prGO@cHKUST-1 composite membrane with the modification of dopamine and orientated growth of MOFs.Mg/AI-layered double hydroxides(Mg/Al-LDHs)was used as a modulator to obtain cubic HKUST-1(cHKUST-1)with excellent morphology and special properties.Scanning Electron Microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)etc.characte rization illustrated successful synthesis of cHKUST-1 and composite membranes.Cubic HKUST-1 can tune the inter-layer spacing of graphene oxide(GO)leading increase in hydrophilicity and flux of the membrane.Meanwhile,the reduction effect of PDA and intercalation effect of MOFs could change the stacked way of GO layers,forming several fuzzy pores and more active sites on membrane surface.The prGO@cHKUST-1 membrane has an excellent rejection for methylene blue(MB)(99.5%)and Congo red(CR)(71.2%).Moreover,the modified membra ne exhibited 10 and 5 times higher permeation flux than that of original GO membrane and prGO membrane,respectively.Thus,using orientated growth of MOFs to synthesize GO based composite membrane will provide useful insights in ultrahigh permeation flux membranes of dye and oil-water emulsion separation.
基金Project supported by the National Key Research and Deveopment Program of China(Grant No.2018YFB1500402)the National Natural Science Foundation of China(Grant Nos.61674084 and 61874167)+5 种基金the Fundamental Research Funds for Central Universities,Chinathe Natural Science Foundation of Tianjin City,China(Grant No.17JCYBJC41400)the Open Fund of the Key Laboratory of Optical Information Science&Technology of Ministry of Education of China(Grant No.2017KFKT014)the 111 Project,China(Grant No.B16027)the International Cooperation Base,China(Grant No.2016D01025)Tianjin International Joint Research and Development Center,China。
文摘Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-SiOx:H layers on different orientated c-Si substrates are fabricated. An optimal effective lifetime(τ(eff)) of 4743 μs and corresponding implied opencircuit voltage(iV(oc)) of 724 mV are obtained on〈100〉-orientated c-Si wafers. While τ(eff) of 2429 μs and iV_(oc) of 699 mV are achieved on 111-orientated substrate. The FTIR and XPS results indicate that the a-SiOx:H network consists of SiOx(Si-rich), Si–OH, Si–O–SiHx, SiO2 ≡ Si–Si, and O3 ≡ Si–Si. A passivation evolution mechanism is proposed to explain the different passivation results on different c-Si wafers. By modulating the a-SiOx:H layer, the planar silicon heterojunction solar cell can achieve an efficiency of 18.15%.
文摘The effect that the market orientation brings to product innovation performance is reported and the degree of product innovativeness is explored. The interdepartmental integration inside the company is also investigated. A series of hypotheses were developed aiming at presenting a conceptual framework to clarify how market orientation contributes to product innovation performance-moderated by the degree of product innovativeness and affected by the interdepartmental integration. Survey data from 36 business units were analyzed based on the respondents in the research. The statistic results suggest a substantial positive effect of market orientation on product innovation performance. Under the condition of incremental innovativeness among the samples, the more innovative the product is, the more improvements in product innovation performance would be achieved. A variety of particular interdepartmental integration mechanisms have been certified to lend more supports to establishing market orientation and improving product innovation performance.
基金National Natural Science Foundation of China(51504138,51674118,52271177)Hunan Provincial Natural Science Foundation of China(2023JJ50181)Supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2024-022)。
文摘To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure.
文摘In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-quality urban development and continuously meet people’s growing aspirations for a better life.Wuhu,in central China’s Anhui Province,has consistently enhanced its urban functions and services to build a modern,people-oriented city that is innovative,livable,beautiful,resilient,and smart.
基金supported by Key R&D Program of Shandong Province,China(No.2025CXGC010407).
文摘Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.
基金This work was supported by the National Natural Science Foundation of China(Nos.51772309 and 52130207).The authors thank Prof.Jing WANG(Dalian University of Technology)for the synthesis of Al2O3 platelets.
文摘Transparent Al_(2)O_(3) ceramics with grains aligned to the c-axis were prepared by adding platelets with a low aspect ratio into fine equiaxed particles.The mixed powders were formed into green bodies using spontaneous coagulation casting and sintered by pressureless sintering and hot-isostatic pressure sintering.Zeta potentials and rheological behavior of the slurries,relative densities of green bodies,and orientation and optical properties of sintered bodies were investigated and discussed.The platelet with a high aspect ratio suppressed densification more seriously during sintering than the one with a low aspect ratio.An excellent oriented structure was obtained when 5 wt%platelets with a low aspect ratio were added,and transparent Al_(2)O_(3) ceramics with grains aligned to c-axis were successfully prepared;the in-line transmittance was 78.4%at 600 nm,which is the highest one in the currently reported literature.
基金supported by the:Direction Générale de la Recherche Scientifique et du Développement Technologique(DGRSDT).
文摘To enhance the robustness and dynamic performance of a self-excited induction generator (SEIG) used in a stand-alone wind energy system (WES), a virtual flux oriented control (VFOC) based on nonlinear super-twisting sliding mode control (STSMC) is adopted. STSMC is used to replace the conventional proportional-integral-Fuzzy Logic Controller (PI-FLC) of the inner current control loops. The combination of the proposed control strategy with space vector modulation (SVM) applied to a PWM rectifier brings many advantages such as reduction in harmonics, and precise and rapid tracking of the references. The performance of the proposed control technique (STSMC-VFOC-SVM) is verified through simulations and compared with the traditional technique (PI-FLC-VFOC-SVM). It shows that the proposed method improves the dynamics of the system with reduced current harmonics. In addition, the use of a virtual flux estimator instead of a phase-locked loop (PLL) eliminates the line voltage sensors and thus increases the reliability of the system.
文摘Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.
基金financially supported by the National Natural Science Foundation of China(No.52071040 and 51871036)Natural Science Foundation of Shandong Province,China(No.ZR2022QE008)China Postdoctoral Science Foundation(No.2022M712984)。
文摘Although magnesium-aluminum alloys,such as AZ80 and AZ91 have promising application potential in automotive,high-speed train and aerospace fields,their age-hardening response is generally not very appreciable.In this work,the aging-hardening response of AZ80 alloy was effectively enhanced by applying cold-rolling deformation before conducting conventional aging treatment at 200°C.Compared to the directly aged sample,the yield strength of the pre-rolling and aged sample was increased by 35 MPa.Electron microscope examination confirmed that profuse{10¯11}and{10¯11}-{10¯12}twins,consisting of high density of dislocations and stacking faults,were generated by cold rolling.Blocky or ellipsoidal Mg_(17)Al_(12)precipitates formed at the twin boundaries(TBs)during subsequent aging treatment.Crystallographic analysis indicated that the precipitates at{10¯11}TBs always held an identical Potter OR with both the matrix and twin,while the precipitates at{10¯11}-{10¯12}TBs exhibited three different ORs:Burgers OR,Potter OR and P-S OR with either the matrix or the twin.Moreover,recrystallized grains were found inside{10¯11}-{10¯12}double twins after peak-aging at 200°C,implying that precipitation and recrystallization might occur concurrently along TBs at a relatively low temperature.It was speculated that the highly stored energy inside twins and the high elastic energy between the precipitates and twins were driving factors for the occurrence of recrystallization.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0710604)NSFC(Grant No.42374064).
文摘Determining the orientation of in-situ stresses is crucial for various geoscience and engineering appli-cations.Conventional methods for estimating these stress orientations often depend on focal mechanism solutions(FMSs)derived from earthquake data and formation micro-imager(FMI)data from well logs.However,these techniques can be costly,depth-inaccurate,and may lack spatial coverage.To address this issue,we introduce the use of three-dimensional(3D)seismic data(active sources)as a lateral constraint to approximate the 3D stress orientation field.Recognizing that both stress and fracture patterns are closely related to seismic velocity anisotropy,we derive the orientation of azimuthal anisotropy from multi-azimuth 3D seismic data to compensate for the lack of spatial stress orientation information.We apply our proposed workflow to a case study in the Weiyuan area of the Sichuan Basin,China,a region targeted for shale gas production.By integrating diverse datasets,including 3D seismic,earthquakes,and well logs,we develop a comprehensive 3D model of in-situ stress(orientations and magnitudes).Our results demonstrate that the estimated anisotropy orientations from 3D seismic data are consistent with the direction of maximum horizontal principal stress(SHmax)obtained from FMIs.We analyzed 12 earthquakes(magnitude>3)recorded between 2016 and 2020 for their FMSs and compressional axis(P-axis)orientations.The derived SHmax direction from our 3D stress model is 110°ES(East-South),which shows excellent agreement with the FMSs(within 3.96°).This close alignment validates the reliability and precision of our integrated method for predicting 3D SHmax orientations.
基金funding support from the National Nature Science Foundation of China(Grant No.42272334)the National Key Research and Development Program of China(Grant No.2022YFE0137200)the Taishan Scholars Program(Grant No.2019RKB01083).
文摘Fracture(fault)reactivation can lead to dynamic geological hazards including earthquakes,rock collapses,landslides,and rock bursts.True triaxial compression tests were conducted to analyze the fracture reactivation process under two different orientations of σ_(2),i.e.σ_(2) parallel to the fracture plane(Scheme 2)and σ_(2) cutting through the fracture plane(Scheme 3),under varying σ_(3) from 10 MPa to 40 MPa.The peak or fracture reactivation strength,deformation,failure mode,and post-peak mechanical behavior of intact(Scheme 1)and pre-fractured(Schemes 2 and 3)specimens were also compared.Results show that for intact specimens,the stress remains nearly constant in the residual sliding stage with no stick-slip,and the newly formed fracture surface only propagates along the σ_(2) direction when σ_(3) ranges from 10 MPa to 30 MPa,while it extends along both σ_(2) and σ_(3) directions when σ_(3) increases to 40 MPa;for the pre-fractured specimens,the fractures are usually reactivated under all the σ_(3) levels in Scheme 2,but fracture reactivation only occurs when σ_(3) is greater than 25 MPa in Scheme 3,below which new faulting traversing the original macro fracture occurs.In all the test schemes,both ε_(2) and ε_(3) experience an accumulative process of elongation,after which an abrupt change occurs at the point of the final failure;the degree of this change is dependent on the orientation of the new faulting or the slip direction of the original fracture,and it is generally more than 10 times larger in the slip direction of the original fracture than in the non-slip direction.Besides,the differential stress(peak stress)required for reactivation and the post-peak stress drop increase with increasing σ_(3).Post-peak stress drop and residual strength in Scheme 3 are generally greater than those in Scheme 2 at the same σ_(3) value.Our study clearly shows that intermediate principal stress orientation not only affects the fracture reactivation strength but also influences the slip deformation and failure modes.These new findings facilitate the mitigation of dynamic geological hazards associated with fracture and fault slip.
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
文摘Oriented graphene aerogels have limited applica-tions because the flexibility of their graphene sheets and mi-crostructure give them a low skeleton strength,insufficient compression resilience,and poor flexibility.We report the preparation of novel aerogel materials with a much better per-formance.Using the driving force of graphene oxide(GO)self-assembly andπ-πinteractions,carbon nanotubes(CNTs)were attached to the GO sheets,and an oriented composite carbon skeleton was constructed using“hydro-plastic foam-ing”.The introduction of CNTs significantly increased the strength of the skeleton and gave the aerogel an excellent re-versible compressibility.The innovative use of cold pressing greatly improved the thermal conductivity and flexibility of the aerogel,providing new ideas for the development of high-performance aerogels.Tests show that the obtained graphene composite aerogel has a reversible compressive strain of over 90%and can withstand 500 compression cycles along the direc-tion of pore accumulation.It can endure more than 10000 bending cycles perpendicular to the direction of composite carbon layer stacking,and its in-plane thermal conductivity reaches 64.5 W·m^(-1)·K^(-1).When filled with phase change materials,the high porosity of the carbon skeleton enables the material to have a high phase change filling rate,and its phase change enthalpy is greater than 150 J/g.Thanks to the exceptional flexibility of the carbon skeleton,the macrostructure of phase change materials can be bent as needed to adapt to thermal management scenarios and conform to device shapes.This significantly enhances practical application compatibility,providing flexible support for temperature control and thermal management across diverse device forms.
基金supports by the Grant-in-Aid of Scientific Research of Challenging Research(Exploratory)(JP23K17738)to TS from MEXT of Japanthe 41st grant of research from Nippon Sheet Glass Foundation for Materials Science and Engineering to TS.
文摘A redox-active monolayer on an optically transparent electrode constitutes a typical platform for spectroelectrochemical sensing.The necessity for its sophistication arises from the availability of multi-dimensional sensing signals.Simultaneous monitoring of the redox current and color change synchronized with the oxidation state change significantly enhances sen-sitivity and selectivity.This study aimed to elucidate the modification of an indium tin oxide(ITO)electrode with a viologen monolayer with an ordered orientation.Novel methods were developed to immobilize a viologen molecule bearing a car-boxyl group to form assembled monolayers through a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-car-bodiimide with N-hydroxy-succinimide(EDC/NHS).In the two methods of immobilization,one utilizes a two-step process to firstly form an aromatic siloxane base layer and subsequently attach the viologen derivative through an amide linkage by post-amidation.The other employs a direct ester linkage between the hydroxyl groups of the ITO surface and the car-boxyl group of the viologen derivative.The latter method was also applied to immobilize a ferrocenyl group at a very short distance from the ITO surface.Potential-modulated UV-visible transmission absorption spectral measurement techniques with oblique incidence of plane-polarized light were employed to determine the orientation of the longitudinal axis of the reduced form of the viologen.The frequency dependence data of the potential-modulated transmission absorption signals were utilized to analyze the electron transfer kinetics.The performance of the two viologen-modified electrodes was com-pared to that of an ITO modified by post-amidation to the most commonly used base layer prepared with 3-aminopropyl triethoxysilane.
基金Natural Science Foundation of Hunan Province,China(No.2024JJ8335)Open Topic of Hunan Geospatial Information Engineering and Technology Research Center,China(No.HNGIET2023004).
文摘The estimation of orientation parameters and correction of lens distortion are crucial problems in the field of Unmanned Aerial Vehicles(UAVs)photogrammetry.In recent years,the utilization of UAVs for aerial photogrammetry has witnessed a surge in popularity.Typically,UAVs are equipped with low-cost non-metric cameras and a Position and Orientation System(POS).Unfortunately,the Interior Orientation Parameters(IOPs)of the non-metric cameras are not fixed.Whether the lens distortions are large or small,they effect the image coordinates accordingly.Additionally,Inertial Measurement Units(IMUs)often have observation errors.To address these challenges and improve parameter estimation for UAVs Light Detection and Ranging(LiDAR)and photogrammetry,this paper analyzes the accuracy of POS observations obtained from Global Navigation Satellite System Real Time Kinematic(GNSS-RTK)and IMU data.A method that incorporates additional known conditions for parameter estimation,a series of algorithms to simultaneously solve for IOPs,Exterior Orientation Parameters(EOPs),and camera lens distortion correction parameters are proposed.Extensive experiments demonstrate that the coordinates measured by GNSS-RTK can be directly used as linear EOPs;however,angular EOP measurements from IMUs exhibit relatively large errors compared to adjustment results and require correction during the adjustment process.The IOPs of non-metric cameras vary slightly between images but need to be treated as unknown parameters in high precision applications.Furthermore,it is found that the Ebner systematic error model is sensitive to the choice of the magnification parameter of the photographic baseline length in images,it should be set as less than or equal to one third of the photographic baseline to ensure stable solutions.
文摘After graduating from the China Academy of Arts(Department of Oil Painting)in Hangzhou in 1995,Yang Fudong(1971)moved to Shanghai to work as a graphic designer.Inspired by his daily job in Pudong,he started producing photographic series that closely resembled the advertising campaigns he worked on.Glossy images of stylish young people or dishevelled white collars in highly saturated colours,defined“intellectuals”in cryptic accompanying captions.Conversely,his body of work in black and white,almost entirely shot on 35mm film,portrays a suspended reality out of the historical time:a ghostly dimension akin to a drowsy vigil,a uchronia,an“estranged paradise”-to borrow the title of his earliest film set in Hangzhou.But it is Shanghai’s elusiveness and material relationship with the past that has contributed the most to form Yang’s trademark imagery and aesthetic.What he conjures up in his still and moving images,is a dimension with a distinctive oneiric quality,an“in-between”universe where all the circumstances are justified and have an inner logic,just like in dreams,or just like in the China of his childhood.The research of Yang Fudong is somewhat unique in the universe of contemporary Chinese art and sets him apart from a plethora of artists that have used the video in a much more“didactic”and quotational way.I will illustrate some specific aspects of his black and white body of work,trying to show how a certain self-orientalist trait can be interpreted as strategy to regain narrative agency and bring to the surface a series of removed instances:the main of which being,in my opinion,the fate of Shanghai’s(perhaps of China's Mainland in its ungraspable entirety?)modernity.
基金Supported by National Natural Science Foundation of China(Grant No.55275227)。
文摘Lead zirconate titanate(PbZr_(x)Ti_(1-x)O_(3),PZT)ferroelectric films possess remarkable characteristics such as high residual polarization,high dielectric constant,and high piezoelectric coefficient and have great application prospects in modern electronics,communications,medical care,and military fields.At present,the microstructure changes of PZT ferroelectric thin films have a significant impact on their electrical properties.Therefore,this work summarizes the influences of geometric structure(thickness,porosity),composition structure(Zr/Ti ratio,doping),and grain structure(grain size,grain boundaries,orientation)on the electrical properties of PZT ferroelectric thin films.The results show that the changes in thickness and porosity have a significant impact on the electrical properties of PZT ferroelectric films.Especially,the actual application scenarios and preparation processes determine the required geometric dimensions and structures of PZT ferroelectric films.The Zr/Ti ratio and doping mainly affect the electrical properties by influencing the phase composition of PZT ferroelectric films.The changes in grain size,boundary structure,and orientation dependence mainly have a certain degree of influence on the domain response and domain switching behavior of PZT ferroelectric thin films.In conclusion,different structures have different influence effects on the dielectric,ferroelectric,and piezoelectric properties of PZT ferroelectric films.The way the tiny structure affects how PZT thin films work was shown,helping to guide the design of ferroelectric thin film devices.In order to further study and apply piezoelectric ceramic devices,it is crucial to have an in-depth understanding of the relationship between the structure and performance of piezoelectric ceramic devices.
基金supported by the National Natural Science Foundation of China(32370484)China Scholarship Council,National Science&Technology Fundamental Resources Investigation Program of China(2019FY101800)the National Animal Collection Resource Center,China.
文摘We review the genus Paraglenurus van der Weele,1909 in China,and provide a new Chinese record:P.scopifer(Gerstaeker,1888)from Orchid Island(Lanyu).Additionally,we describe a new species of Paraglenurus from South Vietnam,i.e.,P.badanoi sp.nov.,which represents the first record of this genus in Indochina.Furthermore,we confirm that the paratypes of P.pumilus(Yang,1997)are actually a distinct new species in the genus Indophanes Banks,1940,i.e.,I.zhiliangi sp.nov.