期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Dual-environment feature fusion-based method for estimating building-scale population distributions
1
作者 Guangyu Liu Rui Li +4 位作者 Jing Xia Zhaohui Liu Jing Cai Huayi Wu Mingjun Peng 《Geo-Spatial Information Science》 CSCD 2024年第6期1943-1958,共16页
Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity o... Information on the population distribution at the building scale can help governments make supplemental decisions to address complex urban management issues.However,the discontinuity and strong spatial heterogeneity of research units at the building scale make it challenging to fuse multi-source geographic data,which causes significant errors in population estimation.To address this problem,this study proposes a method for population estimation at the building scale based on Dual-Environment Feature Fusion(DEFF).The dual environments of buildings were constructed by splitting the physical boundaries and extracting features suitable for the dual-environment scale from multi-source geographic data to describe the complex environmental features of buildings.Meanwhile,Data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)method was proposed to assign appropriate weights to the features of the external environment for better feature fusion.Finally,a regression model was established using dual-environment features for building-scale population estimation.The experimental areas chosen for this study were Jianghan and Wuchang Districts,both located in Wuhan City,China.The estimated results of the DEFF were compared with those of the ablation experiments,as well as three publicly accessible population datasets,specifically LandScan,WorldPop,and GHS-POP,at the community scale.The evaluation results showed that DEFF had an R2 of approximately 0.8,Mean Absolute Error(MAE)of approximately 1200,Root Mean Square Error(RMSE)of approximately 1700,and both Mean Absolute Percentage Error(MAPE)and Symmetric Mean Absolute Percentage Error(SMAPE)of approximately 26%,indicating an improved performance and verifying the validity of the proposed method for fine-scale population estimation. 展开更多
关键词 Building scale multi-source data fusion estimation of population distribution dual environment data Quality Weighting based Technique for Order of Preference by Similarity to Ideal Solution(DQW-TOPSIS)
原文传递
Parameterization based on maximum curvature minimization model
2
作者 BAN Jinjin ZHANG Caiming ZHOU Yuanfeng 《Computer Aided Drafting,Design and Manufacturing》 2013年第1期47-52,共6页
Parameterization is one of the key problems in the construction of a curve to interpolate a set of ordered points. We propose a new local parameterization method based on the curvature model in this paper. The new met... Parameterization is one of the key problems in the construction of a curve to interpolate a set of ordered points. We propose a new local parameterization method based on the curvature model in this paper. The new method determines the knots by mi- nimizing the maximum curvature of quadratic curve. When the knots by the new method are used to construct interpolation curve, the constructed curve have good precision. We also give some comparisons of the new method with existing methods, and our method can perform better in interpolation error, and the interpolated curve is more fairing. 展开更多
关键词 ordered data points quadratic curve CURVATURE PARAMETERIZATION
在线阅读 下载PDF
Efficient XML Query and Update Processing Using A Novel Prime-Based Middle Fraction Labeling Scheme 被引量:2
3
作者 Zunyue Qin Yong Tang +3 位作者 Feiyi Tang Jing Xiao Changqin Huang Hongzhi Xu 《China Communications》 SCIE CSCD 2017年第3期145-157,共13页
XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees i... XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees is one of the important methods to obtain the excellent management of XML data. Previous labeling schemes such as region and prefix often sacrifice updating performance and suffer increasing labeling space when inserting new nodes. To overcome these limitations, in this paper we propose a new labeling idea of separating structure from order. According to the proposed idea, a novel Prime-based Middle Fraction Labeling Scheme(PMFLS) is designed accordingly, in which a series of algorithms are proposed to obtain the structural relationships among nodes and to support updates. PMFLS combines the advantages of both prefix and region schemes in which the structural information and sequential information are separately expressed. PMFLS also supports Order-Sensitive updates without relabeling or recalculation, and its labeling space is stable. Experiments and analysis on several benchmarks are conducted and the results show that PMFLS is efficient in handling updates and also significantly improves the performance of the query processing with good scalability. 展开更多
关键词 XML data structure information order information information separation PMFLS labeling scheme
在线阅读 下载PDF
DATA PREORDERING IN GENERALIZED PAV ALGORITHM FOR MONOTONIC REGRESSION
4
作者 Oleg Burdakov Anders Grimvall Oleg Sysoev 《Journal of Computational Mathematics》 SCIE CSCD 2006年第6期771-790,共20页
Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applicat... Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33], the Pool-Adjazent-Violators algorithm (PAV) was generalized from completely to partially ordered data sets (posets). The new algorithm, called CPAV, is characterized by the very low computational complexity, which is of second order in the number of observations. It treats the observations in a consecutive order, and it can follow any arbitrarily chosen topological order of the poset of observations. The CPAV algorithm produces a sufficiently accurate solution to the MR problem, but the accuracy depends on the chosen topological order. Here we prove that there exists a topological order for which the resulted CPAV solution is optimal. Furthermore, we present results of extensive numerical experiments, from which we draw conclusions about the most and the least preferable topological orders. 展开更多
关键词 Quadratic programming Large scale optimization Least distance problem Monotonic regression Partially ordered data set Pool-adjacent-violators algorithm.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部