A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical pro...A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical projection of a fourth-order chaotic system generated through nonsingular states transformation from a cell neural net chaotic system. In this sense, it is said that generalized synchronization is achieved in reduced-order. The synchronization discussed here expands the scope of reduced-order synchronization studied in relevant literatures. In this way, we can achieve generalized reduced-order synchronization between many famous chaotic systems such as the second-order Drifting system and the third-order Lorenz system by designing a fast slide mode controller. Simulation results are provided to verify the operation of the designed synchronization.展开更多
The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observe...The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observer is designed.The projective synchronization can be realized by choosing the transition matrix of the observer as a diagonal matrix.Further,the synchronization between hyperchaotic Chen system(fourth order)and Rssler system(third order)is taken as the example to demonstrate the effectiveness of the proposed observer.Numerical simulations confirm the effectiveness of the method.展开更多
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system...This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system, then a control method based on a partially linear decomposition and negative feedback of state errors is utilized on the new integer order system. Mathematic analyses prove the feasibility and the numerical simulations show the effectiveness of the proposed method.展开更多
Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this...Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scalin...Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or...In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.展开更多
Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensiona...Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is t...In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is the time-domain method that is analysed by using the Lyapunov stability theory. Finally, the numerical simulations are used-to illustrate the effectiveness of the proposed synchronization methods.展开更多
As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field...As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.展开更多
In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective sy...In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective synchronization theory, and determine the sufficient condition for the synchronization of the drive system and the response system based on fractional-order stability theory. The MPS of a fractional-order hyperchaotic system is achieved by transmitting a single variable. This scheme reduces the information transmission in order to achieve the synchronization, and extends the applicable scope of MPS. Numerical simulations further demonstrate the feasibility and the effectiveness of the proposed scheme.展开更多
In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchro...In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive s...This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.展开更多
In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values ...In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values is achieved. The proposed synchronization scheme is simple and theoretically rigorous.Numerical simulations are in agreement with the theoretical analysis.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60374037) and the National High Technology Development Program of China (Grant No 2004BA204B08-02).
文摘A new kind of generalized reduced-order synchronization of different chaotic systems is proposed in this paper. It is shown that dynamical evolution of third-order oscillator can be synchronized with the canonical projection of a fourth-order chaotic system generated through nonsingular states transformation from a cell neural net chaotic system. In this sense, it is said that generalized synchronization is achieved in reduced-order. The synchronization discussed here expands the scope of reduced-order synchronization studied in relevant literatures. In this way, we can achieve generalized reduced-order synchronization between many famous chaotic systems such as the second-order Drifting system and the third-order Lorenz system by designing a fast slide mode controller. Simulation results are provided to verify the operation of the designed synchronization.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50877007)the Fundamental Research Funds for the Central Universities(Grant No.DUT10LK12)
文摘The projective reduced-order synchronization of two different chaotic systems with different orders is investigated based on the observer design in this paper.According to the observer theory,the reduced-order observer is designed.The projective synchronization can be realized by choosing the transition matrix of the observer as a diagonal matrix.Further,the synchronization between hyperchaotic Chen system(fourth order)and Rssler system(third order)is taken as the example to demonstrate the effectiveness of the proposed observer.Numerical simulations confirm the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金Project supported by the Key Youth Project of Southwest University for Nationalities of China and the Natural Science Foundation of the State Nationalities Affairs Commission of China (Grant Nos 05XN07 and 07XN05).
文摘This paper proposes a method to achieve projective synchronization of the fractional order chaotic Rossler system. First, construct the fractional order Rossler system's corresponding approximate integer order system, then a control method based on a partially linear decomposition and negative feedback of state errors is utilized on the new integer order system. Mathematic analyses prove the feasibility and the numerical simulations show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Nos.60573172and60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China(Grant No.20070141014)the Natural Science Foundation of Liaoning Province,China(Grant No.20082165)
文摘Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lu system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
基金Project supported by the National Natural Science Foundation of China(Grant No.11371049)the Science Foundation of Beijing Jiaotong University(Grant Nos.2011JBM130 and 2011YJS076)
文摘Function projective lag synchronization of different structural fractional-order chaotic systems is investigated. It is shown that the slave system can be synchronized with the past states of the driver up to a scaling function matrix. According to the stability theorem of linear fractional-order systems, a nonlinear fractional-order controller is designed for the synchronization of systems with the same and different dimensions. Especially, for two different dimensional systems, the synchronization is achieved in both reduced and increased dimensions. Three kinds of numerical examples are presented to illustrate the effectiveness of the scheme.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
文摘In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (Grant No. 20082165)
文摘Based on the stability theory of the fractional order system, the dynamic behaviours of a new fractional order system are investigated theoretically. The lowest order we found to have chaos in the new three-dimensional system is 2.46, and the period routes to chaos in the new fractional order system are also found. The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent. Furthermore, a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system, and its validity is proved by Laplace transformation theory.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
文摘In this paper, the synchronization in a unified fractional-order chaotic system is investigated by two methods. One is the frequency-domain method that is analysed by using the Laplace transform theory. The other is the time-domain method that is analysed by using the Lyapunov stability theory. Finally, the numerical simulations are used-to illustrate the effectiveness of the proposed synchronization methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science the Foundation of Anhui Province(Grant No.1208085M F93)the 211 Innovation Team of Anhui University(Grant Nos.KJTD007A and KJTD001B)
文摘As an important research branch,memristor has attracted a range of scholars to study the property of memristive chaotic systems.Additionally,time⁃delayed systems are considered a significant and newly⁃developing field in modern research.By combining memristor and time⁃delay,a delayed memristive differential system with fractional order is proposed in this paper,which can generate hidden attractors.First,we discussed the dynamics of the proposed system where the parameter was set as the bifurcation parameter,and showed that with the increase of the parameter,the system generated rich chaotic phenomena such as bifurcation,chaos,and hypherchaos.Then we derived adequate and appropriate stability criteria to guarantee the system to achieve synchronization.Lastly,examples were provided to analyze and confirm the influence of parameter a,fractional order q,and time delayτon chaos synchronization.The simulation results confirm that the chaotic synchronization is affected by a,q andτ.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective synchronization theory, and determine the sufficient condition for the synchronization of the drive system and the response system based on fractional-order stability theory. The MPS of a fractional-order hyperchaotic system is achieved by transmitting a single variable. This scheme reduces the information transmission in order to achieve the synchronization, and extends the applicable scope of MPS. Numerical simulations further demonstrate the feasibility and the effectiveness of the proposed scheme.
基金Supported by National Natural Science Foundation of China under Grant No.61201227National Natural Science Foundation of China Guangdong Joint Fund under Grant No.U1201255+2 种基金the Natural Science Foundation of Anhui Province under Grant No.1208085MF93211 Innovation Team of Anhui University under Grant Nos.KJTD007A and KJTD001Bsupported by Chinese Scholarship Council
文摘In this paper, the synchronization of fractional order complex-variable dynamical networks is studied using an adaptive pinning control strategy based on close center degree. Some effective criteria for global synchronization of fractional order complex-variable dynamical networks are derived based on the Lyapunov stability theory. From the theoretical analysis, one concludes that under appropriate conditions, the complex-variable dynamical networks can realize the global synchronization by using the proper adaptive pinning control method. Meanwhile, we succeed in solving the problem about how much coupling strength should be applied to ensure the synchronization of the fraetionla order complex networks. Therefore, compared with the existing results, the synchronization method in this paper is more general and convenient. This result extends the synchronization condition of the real-variable dynamical networks to the complex-valued field, which makes our research more praetical. Finally, two simulation examples show that the derived theoretical results are valid and the proposed adaptive pinning method is effective.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the"Chunhui Plan"Cooperative Research for Ministry of Education(Z2016133)the Open Research Fund of Key Laboratory of Automobile Engineering(Xihua University)+3 种基金Sichuan Province(szjj2016-017)the National Natural Science Foundation of China(51177137)the Scientific Research Foundation of the Education Department of Sichuan Province(16ZB0163)the China Scholarship Council
文摘This paper focuses on synchronization of fractionalorder complex dynamical networks with decentralized adaptive coupling.Based on local information among neighboring nodes,two fractional-order decentralized adaptive strategies are designed to tune all or only a small fraction of the coupling gains respectively.By constructing quadratic Lyapunov functions and utilizing fractional inequality techniques,Mittag-Leffler function,and Laplace transform,two sufficient conditions are derived for reaching network synchronization by using the proposed adaptive laws.Finally,two numerical examples are given to verify the theoretical results.
基金Project supported by the Key Lab Open Foundation for Network Control Technology and Intelligent Instruments of Collegesin Chongqing Province,China (Grant No 20070F01)Education Committee of Chongqing Province,China (Grant NoKJ070502)
文摘In this paper, a novel hyperchaotic system with one nonlinear term and its fractional order system are proposed. Furthermore,synchronization between two fractional-order systems with different fractional-order values is achieved. The proposed synchronization scheme is simple and theoretically rigorous.Numerical simulations are in agreement with the theoretical analysis.