Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cycli...Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.展开更多
Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform a...Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.展开更多
A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordin...A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.展开更多
This paper is the sister piece of reference[2].In this paper,we gener alize the method of the reduction of order,construct and apply the method of 2-3 resolution.We develop the method by which we determine the spannin...This paper is the sister piece of reference[2].In this paper,we gener alize the method of the reduction of order,construct and apply the method of 2-3 resolution.We develop the method by which we determine the spanning matrix of decomposable element in V^((5)) under each five different cases.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos, 10372053 and 10472040, the Natural Science Foundation of Hunan Province under Grant No. 03JJY3005, the Scientific Research Foundation of Eduction Burean of Hunan Province under Grant No. 02C033 and the 0utstanding Young Talents Training Fund of Liaoning Province under Grant No. 3040005
文摘Routh order reduction method of the relativistic Birkhoffian equations is studied. For a relativistic Birkhoffian system, the cyclic integrals can be found by using the perfect differential method. Through these cyclic integrals, the order of the system can be reduced. If the relativistic Birkhoffian system has a cyclic integral, then the Birkhoffian equations can be reduced at least by two degrees and the Birkhoffian form can be kept. The relations among the relativistic Birkhoffian mechanics, the relativistic Hamiltonian mechanics, and the relativistic Lagrangian mechanics are discussed, and the Routh order reduction method of the relativistic Lagrangian system is obtained. And an example is given to illustrate the application of the result.
文摘Starting with the governing equations in terms of displacements of 3D elastic media, the solutions to displacement components and their first derivatives are obtained by the application of a double Fourier transform and an order reduction method based on the Cayley-Hamilton theorem. Combining the solutions and the constitutive equations which connect the displacements and stresses, the transfer matrix of a single soil layer is acquired. Then, the state space solution to multilayered elastic soils is further obtained by introducing the boundary conditions and continuity conditions between adjacent soil layers. The numerical analysis based on the present theory is carried out, and the vertical displacements of multilayered foundation with a weak and a hard underlying stratums are compared and discussed.
基金The National Natural Science Foundation of China (No10471023)
文摘A numerical simulation for a model of wood drying process is considered. The model is given by a couple of nonlinear differential equations. One is a nonlinear parabolic equation and the other one is a nonlinear ordinary equation. A difference scheme is derived by the method of reduction of order. First, a new variable is introduced and the original problem is rewritten into a system of the first-order differential equations. Secondly, a difference scheme is constructed for the later problem. The solvability, stability and convergence of the difference scheme are proved by the energy method. The convergence order of the difference scheme is secondorder both in time and in space. A prior error estimate is put forward. The new variable is put aside to reduce the computational cost. A numerical example testifies the theoretical result.
基金Supported by the National Natural Science Foundation of China (11971222)。
文摘This paper is the sister piece of reference[2].In this paper,we gener alize the method of the reduction of order,construct and apply the method of 2-3 resolution.We develop the method by which we determine the spanning matrix of decomposable element in V^((5)) under each five different cases.