This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Fir...This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.展开更多
Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These ...Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.展开更多
This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule th...This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule the committed generating units output so as to meet the required load demand while satisfying the system equality and inequality constraints. This is a maiden approach developed to obtain the optimal dispatches of generating units for all possible load demands of power system in a single execution. The feasibility of the proposed method is demonstrated by solving economic load dispatch problem, combined economic and emission dispatch problem, multiarea economic dispatch problem and economic dispatch problem with multiple fuel options. The proposed methodology is tested with different scale of power systems. The generating unit operational constraints are also considered. The simulation results obtained by proposed methodology for various economic dispatch problems are compared with previous literatures in terms of solution quality. Numerical simulation results indicate an improvement in total cost saving and hence the superiority of the proposed method is also revealed for economic dispatch problems.展开更多
With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30...With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.展开更多
In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be bet...In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be better realized,if RESs and TPUs connected to the power grid at the same point of common coupling(PCC)are dispatched as a coupled system.Firstly,the definition of the coupled system is introduced,followed by an analysis on its characteristics.Secondly,based on the operation characteristics of deep peak regulation(DPR)of TPUs in the coupled system,the constraint of the ladder-type ramping rate applicable for day-ahead dispatch is proposed,and the corresponding flexible spinning reserve constraint is further established.Then,considering these constraints and peak regulation ancillary services,a day-ahead optimal dispatch model of the coupled system is established.Finally,the operational characteristics and advantages of the coupled system are analyzed in several case studies based on a real-world power grid in Liaoning province,China.The numerical results show that the coupled system can further improve the economic benefits of RESs and TPUs under the existing policies.展开更多
Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncer...Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.展开更多
Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superi...Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.展开更多
The coordinated control of multiple-sources including wind,photovoltaic(PV)and storage brings new challenges to traditional dispatch and control technologies.This paper firstly introduces a framework of wind,PV and st...The coordinated control of multiple-sources including wind,photovoltaic(PV)and storage brings new challenges to traditional dispatch and control technologies.This paper firstly introduces a framework of wind,PV and storage co-generation monitoring system.Then,key technologies of co-generation monitoring system including day-ahead optimal dispatching,active power coordinated control and reactive power and voltage control are proposed.The framework and the techniques described in this paper have been applied in the National Wind,Photovoltaic,Storage and Transmission Demonstration Project of China,and their validity have been tested and verified.展开更多
文摘This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.
文摘Commodity prices have fallen sharply due to the global financial crisis. This has adversely affected the viability of some mining projects, including leading to the possibility of bankruptcy for some companies. These price falls reflect uncertainties and risks associated with mining projects. In recent years, much work has been published related to the application of real options pricing theory to value life-of-mine plans in response to long term financial uncertainty and risk. However, there are uncertainties and risks associated with medium/short-term mining operations. Real options theory can also be applied to tactical decisions involving uncertainties and risks. This paper will investigate the application of real options in the mining industry and present a methodology developed at University of Queensland, Australia, for integrating real options into medium/short-term mine planning and production scheduling. A case study will demonstrate the validity and usefulness of the methodology and techniques developed.
文摘This paper presents a sequential approach with matrix framework for solving various kinds of economic dispatch problems. The objective of the economic dispatch problems of electrical power generation is to schedule the committed generating units output so as to meet the required load demand while satisfying the system equality and inequality constraints. This is a maiden approach developed to obtain the optimal dispatches of generating units for all possible load demands of power system in a single execution. The feasibility of the proposed method is demonstrated by solving economic load dispatch problem, combined economic and emission dispatch problem, multiarea economic dispatch problem and economic dispatch problem with multiple fuel options. The proposed methodology is tested with different scale of power systems. The generating unit operational constraints are also considered. The simulation results obtained by proposed methodology for various economic dispatch problems are compared with previous literatures in terms of solution quality. Numerical simulation results indicate an improvement in total cost saving and hence the superiority of the proposed method is also revealed for economic dispatch problems.
基金supported by National Key Technology Support Program (No. 2013BAA01B00)National Natural Science Foundation of China (No. 51361130152, No. 51577028)
文摘With the gradually widely usage of the air conditioning(AC) loads in developing countries, the urban power grid load has swiftly increased over the past decade.Especially in China, the AC load has accounted for over30% of the maximum load in many cities during summer.This paper proposes a scheme of constructing a virtual peaking unit(VPU) by public buildings’ cool storage central AC(CSCAC) systems and non-CSCAC(NCSCAC)systems for the day-ahead power network dispatching(DAPND). Considering the accumulation effect of different meteorological parameters, a short term load forecasting method of public building’s central AC(CAC) baseline load is firstly discussed. Then, a second-order equivalent thermal parameters model is established for the public building’s CAC load. Moreover, the novel load reduction control strategies for the public building’s CSCAC system and the public building’s NCSCAC system are respectively presented. Furthermore, based on the multiple-rank control strategy, the model of the DAPND with the participation of a VPU is set up. The VPU is composed of large-scale regulated public building’s CAC loads. To demonstrate the effectiveness of the proposed strategy, results of a sample study on a region in Nanjing which involves 22 public buildings’ CAC loads are described in this paper. Simulated results show that, by adopting the proposed DAPND scheme, the power network peak load in the region obviously decreases with a small enough deviation between the regulated load value and the dispatching instruction of the VPU. The total electricity-saving amount accounts for7.78% of total electricity consumption of the VPU before regulation.
基金supported in part by the National Key Research and Development Program of China(No.2019YFB1505400).
文摘In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be better realized,if RESs and TPUs connected to the power grid at the same point of common coupling(PCC)are dispatched as a coupled system.Firstly,the definition of the coupled system is introduced,followed by an analysis on its characteristics.Secondly,based on the operation characteristics of deep peak regulation(DPR)of TPUs in the coupled system,the constraint of the ladder-type ramping rate applicable for day-ahead dispatch is proposed,and the corresponding flexible spinning reserve constraint is further established.Then,considering these constraints and peak regulation ancillary services,a day-ahead optimal dispatch model of the coupled system is established.Finally,the operational characteristics and advantages of the coupled system are analyzed in several case studies based on a real-world power grid in Liaoning province,China.The numerical results show that the coupled system can further improve the economic benefits of RESs and TPUs under the existing policies.
文摘Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.
文摘Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.
文摘The coordinated control of multiple-sources including wind,photovoltaic(PV)and storage brings new challenges to traditional dispatch and control technologies.This paper firstly introduces a framework of wind,PV and storage co-generation monitoring system.Then,key technologies of co-generation monitoring system including day-ahead optimal dispatching,active power coordinated control and reactive power and voltage control are proposed.The framework and the techniques described in this paper have been applied in the National Wind,Photovoltaic,Storage and Transmission Demonstration Project of China,and their validity have been tested and verified.