Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasonin...Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.展开更多
One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from ...One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from other countries as a reference. Updating road networks through the use of hyperspectral remote sensing images can be a good alternative. However, accurately recognizing and extracting hyperspectral images from roads has been recognized as a challenging task in the processing of hyperspectral data. In order to solve the aforementioned challenges, Hyperion hyperspectral images were combined with the Optimum Forest Path (OPF) algorithm for supervised classification of rural roads and the effectiveness of the OPF and SVM classifiers when applied to these areas was compared. Both classifiers produced reasonable results, however, the OPF algorithm outperformed SVM. The higher classification accuracy obtained by the OPF was mainly attributed to the ability to better distinguish between regions of exposed soil and unpaved roads.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed,...Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.展开更多
文摘Human beings’ intellection is the characteristic of a distinct hierarchy and can be taken to construct a heuristic in the shortest path algorithms.It is detailed in this paper how to utilize the hierarchical reasoning on the basis of greedy and directional strategy to establish a spatial heuristic,so as to improve running efficiency and suitability of shortest path algorithm for traffic network.The authors divide urban traffic network into three hierarchies and set forward a new node hierarchy division rule to avoid the unreliable solution of shortest path.It is argued that the shortest path,no matter distance shortest or time shortest,is usually not the favorite of drivers in practice.Some factors difficult to expect or quantify influence the drivers’ choice greatly.It makes the drivers prefer choosing a less shortest,but more reliable or flexible path to travel on.The presented optimum path algorithm,in addition to the improvement of the running efficiency of shortest path algorithms up to several times,reduces the emergence of those factors,conforms to the intellection characteristic of human beings,and is more easily accepted by drivers.Moreover,it does not require the completeness of networks in the lowest hierarchy and the applicability and fault tolerance of the algorithm have improved.The experiment result shows the advantages of the presented algorithm.The authors argued that the algorithm has great potential application for navigation systems of large_scale traffic networks.
文摘One of the principal difficulties related to road safety management in Brazil is the lack of data on road projects, especially those on rural roads, which makes it difficult to use road safety studies and models from other countries as a reference. Updating road networks through the use of hyperspectral remote sensing images can be a good alternative. However, accurately recognizing and extracting hyperspectral images from roads has been recognized as a challenging task in the processing of hyperspectral data. In order to solve the aforementioned challenges, Hyperion hyperspectral images were combined with the Optimum Forest Path (OPF) algorithm for supervised classification of rural roads and the effectiveness of the OPF and SVM classifiers when applied to these areas was compared. Both classifiers produced reasonable results, however, the OPF algorithm outperformed SVM. The higher classification accuracy obtained by the OPF was mainly attributed to the ability to better distinguish between regions of exposed soil and unpaved roads.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.
文摘Finding optimal path in a given network is an important content of intelligent transportation information service. Static shortest path has been studied widely and many efficient searching methods have been developed, for example Dijkstra’s algorithm, Floyd-Warshall, Bellman-Ford, A* et al. However, practical travel time is not a constant value but a stochastic value. How to take full use of the stochastic character to find the shortest path is a significant problem. In this paper, GPS floating car is used to detect road section’s travel time. The probability distribution of travel time is estimated according to Bayes estimation method. The combined probability distribution of a feasible route is calculated according to probability operation. The objective function is to find the route that has the biggest probability to arrive for desired time thresholds. Improved Genetic Algorithm is used to calculate the optimal path. The efficiency of the proposed method is illustrated with a practical example.