A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic the...A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic thermodynamics and a growth kinetics model based on neural networks were established.Then,optimization formulations were constructed in three stages to obtain an optimal sintering schedule that minimized energy consumption for different requirements.Simulations demonstrate that the models accurately predict the oxygen vacancy concentrations and grain size,with root mean square errors of approximately 5%and 3%,respectively.Furthermore,the optimized sintering schedule not only meets the required quality standards but also reduces sintering time by 12.31%and keeping temperature by 11.96%.This research provides new insights and methods for the preparation of ternary cathode materials.展开更多
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and furth...Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated.展开更多
According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has som...According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.展开更多
Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their correspondin...Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase sch...Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase scheduling model for flexible resources in ADN based on probabilistic risk perception.First,a full-cycle probabilistic trend sequence is constructed based on the source-load historical data,and in the day-ahead scheduling phase,the response interval of the flexibility resources on the load and storage side is optimized based on the probabilistic trend,with the probability of the security boundary as the security constraint,and with the economy as the objective.Then in the intraday phase,the core security and economic operation boundary of theADNis screened in real time.Fromthere,it quantitatively senses the degree of threat to the core security and economic operation boundary under the current source-load prediction information,and identifies the strictly secure and low/high-risk time periods.Flexibility resources within the response interval are dynamically adjusted in real-time by focusing on high-risk periods to cope with future core risks of the distribution grid.Finally,the improved IEEE 33-node distribution system is simulated to obtain the flexibility resource scheduling scheme on the load and storage side.Thescheduling results are evaluated from the perspectives of risk probability and flexible resource utilization efficiency,and the analysis shows that the scheduling model in this paper can promote the consumption of low-carbon energy from wind and photovoltaic sourceswhile reducing the operational risk of the distribution network.展开更多
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users....Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.展开更多
A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimizatio...A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization interaction in distribution network transformer areas,as well as the problem of significant photovoltaic curtailment due to the inability to consume photovoltaic power locally.A scheduling architecture combiningmulti-temporal scales with a three-level decision-making hierarchy is established:the overall approach adopts a centralized-distributed method,analyzing the operational characteristics and interaction relationships of the distribution network center layer,cluster layer,and transformer area layer,providing a“spatial foundation”for subsequent optimization.The optimization process is divided into two stages on the temporal scale:in the first stage,based on forecasted electricity load and demand response characteristics,time-of-use electricity prices are utilized to formulate day-ahead optimization strategies;in the second stage,based on the charging and discharging characteristics of energy storage vehicles and multi-agent cooperative game relationships,rolling electricity prices and optimal interactive energy solutions are determined among clusters and transformer areas using the Nash bargaining theory.Finally,a distributed optimization algorithm using the bisection method is employed to solve the constructed model.Simulation results demonstrate that the proposed optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy.展开更多
A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protect...A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method.展开更多
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on...This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system.展开更多
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of...The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.展开更多
Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demand...Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demands of resource utilization and performance optimization.Scheduling strategy optimization,as a key direction for improving Spark’s execution efficiency,has attracted widespread attention.This paper first introduces the basic theories of Spark,compares several default scheduling strategies,and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency.Subsequently,existing scheduling optimization schemes are summarized based on three scheduling modes:load characteristics,cluster characteristics,and matching of both,and representative algorithms are analyzed in terms of performance indicators and applicable scenarios,comparing the advantages and disadvantages of different scheduling modes.The article also explores in detail the integration of Spark scheduling strategies with specific application scenarios and the challenges in production environments.Finally,the limitations of the existing schemes are analyzed,and prospects are envisioned.展开更多
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ...Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.展开更多
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the...The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.展开更多
To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for powe...To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified.展开更多
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ...When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks.展开更多
基金supported by the National Natural Science Foundation of China(No.62033014)the Application Projects of Integrated Standardization and New Paradigm for Intelligent Manufacturing from the Ministry of Industry and Information Technology of China in 2016,and the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0700).
文摘A collaborative optimization method for the sintering schedule of ternary cathode materials was proposed under microscopic coupling constraints.An oxygen vacancy concentration prediction model based on microscopic thermodynamics and a growth kinetics model based on neural networks were established.Then,optimization formulations were constructed in three stages to obtain an optimal sintering schedule that minimized energy consumption for different requirements.Simulations demonstrate that the models accurately predict the oxygen vacancy concentrations and grain size,with root mean square errors of approximately 5%and 3%,respectively.Furthermore,the optimized sintering schedule not only meets the required quality standards but also reduces sintering time by 12.31%and keeping temperature by 11.96%.This research provides new insights and methods for the preparation of ternary cathode materials.
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
基金Supported by the National Natural Science Foundation of China(59379407)
文摘Drip irrigation system can achieve high uniformity. When the system is designed for uniformity coefficient equal or more than 70%, the water application in the field can be expressed as a normal distribution and further simplified to a linear distribution. This paper will describe the irrigation scheduling parameters, percent of deficit, application efficiency and coefficient of variation by simple mathematical model. Using this effective model and the irrigation application, the total yield affected by the total water application for different uniformity of irrigation application can be determined. More over, this paper uses the cost of water, price of yield, uniformity of the drip irrigation system, crop response to water application and environmental concerns of pollution and contamination to determine the optimal irrigation schedule. A case study shows that the optimal irrigation schedule can achieve the effect of water saving and production increment compared with the conventional irrigation schedule in which the whole field is fully irrigated.
基金funded by the Science and Technology Research Project of Education Department of Liaoning(L2015387)Natural Science Foundation of Liaoning(201602542)the National Natural Science Foundation of China(51407119)
文摘According to the actual requirements,profile and rolling energy consumption are selected as objective functions of rolling schedule optimization for tandem cold rolling.Because of mechanical wear,roll diameter has some uncertainty during the rolling process,ignoring which will cause poor robustness of rolling schedule.In order to solve this problem,a robust multi-objective optimization model of rolling schedule for tandem cold rolling was established.A differential evolution algorithm based on the evolutionary direction was proposed.The algorithm calculated the horizontal angle of the vector,which was used to choose mutation vector.The chosen vector contained converging direction and it changed the random mutation operation in differential evolution algorithm.Efficiency of the proposed algorithm was verified by two benchmarks.Meanwhile,in order to ensure that delivery thicknesses have descending order like actual rolling schedule during evolution,a modified Latin Hypercube Sampling process was proposed.Finally,the proposed algorithm was applied to the model above.Results showed that profile was improved and rolling energy consumption was reduced compared with the actual rolling schedule.Meanwhile,robustness of solutions was ensured.
文摘Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
基金supported by Key Technology Research and Application of Online Control Simulation and Intelligent Decision Making for Active Distribution Network(5108-202218280A-2-377-XG).
文摘Aiming at the problems of increasing uncertainty of low-carbon generation energy in active distribution network(ADN)and the difficulty of security assessment of distribution network,this paper proposes a two-phase scheduling model for flexible resources in ADN based on probabilistic risk perception.First,a full-cycle probabilistic trend sequence is constructed based on the source-load historical data,and in the day-ahead scheduling phase,the response interval of the flexibility resources on the load and storage side is optimized based on the probabilistic trend,with the probability of the security boundary as the security constraint,and with the economy as the objective.Then in the intraday phase,the core security and economic operation boundary of theADNis screened in real time.Fromthere,it quantitatively senses the degree of threat to the core security and economic operation boundary under the current source-load prediction information,and identifies the strictly secure and low/high-risk time periods.Flexibility resources within the response interval are dynamically adjusted in real-time by focusing on high-risk periods to cope with future core risks of the distribution grid.Finally,the improved IEEE 33-node distribution system is simulated to obtain the flexibility resource scheduling scheme on the load and storage side.Thescheduling results are evaluated from the perspectives of risk probability and flexible resource utilization efficiency,and the analysis shows that the scheduling model in this paper can promote the consumption of low-carbon energy from wind and photovoltaic sourceswhile reducing the operational risk of the distribution network.
基金supported by National Key Research and Development Program of China(2022YFB4201003)the National Natural Science Foundation of China(52278104 and 52108076)the Science and Technology Innovation Program of Hunan Province(2023RC1042).
文摘Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.
基金funded by the Jilin Province Science and Technology Development Plan Project(20230101344JC).
文摘A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization interaction in distribution network transformer areas,as well as the problem of significant photovoltaic curtailment due to the inability to consume photovoltaic power locally.A scheduling architecture combiningmulti-temporal scales with a three-level decision-making hierarchy is established:the overall approach adopts a centralized-distributed method,analyzing the operational characteristics and interaction relationships of the distribution network center layer,cluster layer,and transformer area layer,providing a“spatial foundation”for subsequent optimization.The optimization process is divided into two stages on the temporal scale:in the first stage,based on forecasted electricity load and demand response characteristics,time-of-use electricity prices are utilized to formulate day-ahead optimization strategies;in the second stage,based on the charging and discharging characteristics of energy storage vehicles and multi-agent cooperative game relationships,rolling electricity prices and optimal interactive energy solutions are determined among clusters and transformer areas using the Nash bargaining theory.Finally,a distributed optimization algorithm using the bisection method is employed to solve the constructed model.Simulation results demonstrate that the proposed optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy.
基金supported by the“Science and Technology Innovation Action Plan”project of Shanghai in 2021 program(21DZ1207502).
文摘A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method.
基金supported by the Israeli Ministry of Infrastructure,Energy and Water Resources.
文摘This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system.
基金funded by the National Key Research and Development Program of China(2024YFE0106800)Natural Science Foundation of Shandong Province(ZR2021ME199).
文摘The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.
基金supported in part by the Key Research and Development Program of Shaanxi under Grant 2023-ZDLGY-34.
文摘Spark performs excellently in large-scale data-parallel computing and iterative processing.However,with the increase in data size and program complexity,the default scheduling strategy has difficultymeeting the demands of resource utilization and performance optimization.Scheduling strategy optimization,as a key direction for improving Spark’s execution efficiency,has attracted widespread attention.This paper first introduces the basic theories of Spark,compares several default scheduling strategies,and discusses common scheduling performance evaluation indicators and factors affecting scheduling efficiency.Subsequently,existing scheduling optimization schemes are summarized based on three scheduling modes:load characteristics,cluster characteristics,and matching of both,and representative algorithms are analyzed in terms of performance indicators and applicable scenarios,comparing the advantages and disadvantages of different scheduling modes.The article also explores in detail the integration of Spark scheduling strategies with specific application scenarios and the challenges in production environments.Finally,the limitations of the existing schemes are analyzed,and prospects are envisioned.
基金supported by the Changzhou Science and Technology Support Project(CE20235045)Open Subject of Jiangsu Province Key Laboratory of Power Transmission and Distribution(2021JSSPD12)+1 种基金Talent Projects of Jiangsu University of Technology(KYY20018)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633).
文摘Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
文摘The energy saving issue of chilled water system in an intelligent building is analyzed from the systematic point of view, and an optimum scheduling scheme which can save energy of the system facilities and satisfy the constraints of the real time cold loads and system running is also proposed. It can make the minimum cost of the system by optimizing the number of running chillers, running parameters and the distribution of real time loads of running chillers. The improved genetic algorithm is used in the optimum scheduling scheme. The computation results show that the building energy consumption can be decreased by about 10%.
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100)。
文摘To analyze the additional cost caused by the performance attenuation of a proton exchange membrane electrolyzer(PEMEL)under the fluctuating input of renewable energy,this study proposes an optimization method for power scheduling in hydrogen production systems under the scenario of photovoltaic(PV)electrolysis of water.First,voltage and performance attenuation models of the PEMEL are proposed,and the degradation cost of the electrolyzer under a fluctuating input is considered.Then,the calculation of the investment and operating costs of the hydrogen production system for a typical day is based on the life cycle cost.Finally,a layered power scheduling optimization method is proposed to reasonably distribute the power of the electrolyzer and energy storage system in a hydrogen production system.In the up-layer optimization,the PV power absorbed by the hydrogen production system was optimized using MALTAB+Gurobi.In low-layer optimization,the power allocation between the PEMEL and battery energy storage system(BESS)is optimized using a non-dominated sorting genetic algorithm(NSGA-Ⅱ)combined with the firefly algorithm(FA).A better optimization result,characterized by lower degradation and total costs,was obtained using the method proposed in this study.The improved algorithm can search for a better population and obtain optimization results in fewer iterations.As a calculation example,data from a PV power station in northwest China were used for optimization,and the effectiveness and rationality of the proposed optimization method were verified.
文摘When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks.