期刊文献+
共找到555篇文章
< 1 2 28 >
每页显示 20 50 100
An equilibrium multi-objective optimum design for non-circular clearance hole of disk with discrete variables 被引量:1
1
作者 Jiaxin HAN Haiding GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期247-254,共8页
An Equilibrium Multi-objective Optimization Model(EMOM)with self-regulated weighting factors has been proposed for the optimum design of non-circular clearance hole on the front flange of turbine disk.In the‘‘equili... An Equilibrium Multi-objective Optimization Model(EMOM)with self-regulated weighting factors has been proposed for the optimum design of non-circular clearance hole on the front flange of turbine disk.In the‘‘equilibrium design",both the stress decrease around the hole and the least hole's profile variation are considered,which balances two ambivalent design goals.Specific discrete variables are applied to realize the standardization design in the optimization process,in which a Surrogate Genetic Coding Algorithm(SGCA)is introduced,and a special check module is used to get rid of repeated fitness evaluation of the samples.The method offers an equilibrium design for the non-circular clearance hole of the turbine disk with great accuracy and efficiency. 展开更多
关键词 discrete variables Equilibrium design Genetic algorithms Non-circular clearance holestructural optimization Turbine components
原文传递
APPROACH FOR LAYOUT OPTIMIZATION OF TRUSS STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS, DISPLACEMENT AND STABILITY CONSTRAINTS 被引量:1
2
作者 石连栓 王跃方 孙焕纯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期593-599,共7页
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met... A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions. 展开更多
关键词 discrete variables structure optimization layout optimum design dynamic stress constraint dynamic displacement constraint dynamic stability constraint relative difference quotient
在线阅读 下载PDF
A METHOD FOR TOPOLOGICAL OPTIMIZATION OF STRUCTURES WITH DISCRETE VARIABLES UNDER DYNAMIC STRESS AND DISPLACEMENT CONSTRAINTS
3
作者 石连栓 孙焕纯 冯恩民 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期781-787,共7页
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un... A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution. 展开更多
关键词 discrete variables structure optimization topological optimization dynamic stress constraint dynamic displacement constraint
在线阅读 下载PDF
STUDIFS ON OPTIMAL TOPOLOGY DES IGN OF STRUCTURES WITH DISCRETE VARIABLES
4
作者 Wang Yuefang Sun Huanchun Huang Lihua (Department of Engineering Mechanics,Dalian University of Technology,Dalian 116023,China) 《Acta Mechanica Solida Sinica》 SCIE EI 1998年第2期139-145,共7页
Some problems in the optimal topology design of structures with discrete variables are studied in this paper.The problem of a model of discrete optimization is discussed and a neglected fact that discrete optimum desi... Some problems in the optimal topology design of structures with discrete variables are studied in this paper.The problem of a model of discrete optimization is discussed and a neglected fact that discrete optimum design may be controlled by the discreteness of sizing variables and global con- straints is pointed out.A heuristic algorithm for solving discrete topology optimization problems of trusses and frames is proposed. 展开更多
关键词 discrete variables topology optimization frame structure heuristic algorithm
在线阅读 下载PDF
DYNAMIC RESPONSE OPTIMIZATION DESIGN FOR ENGINEERING STRUCTURES BASED ON RELIABILITY 被引量:11
5
作者 戴君 陈建军 +2 位作者 李永公 赵竹青 马洪波 《应用数学和力学》 EI CSCD 北大核心 2003年第1期39-46,共8页
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o... In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach. 展开更多
关键词 工程结构 动力响应 动力灵敏度 可靠性约束 优化设计 动应力 动位移
在线阅读 下载PDF
A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization 被引量:2
6
作者 Alessio Cascino Enrico Meli Andrea Rindi 《Railway Engineering Science》 2023年第4期340-350,共11页
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat... Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body. 展开更多
关键词 structural dynamic optimization Car body lightweight design Railway vehicle dynamics Railway car body engineering Railway vehicle design Composite materials
在线阅读 下载PDF
Optimization Analysis of Building Structure Design Based on Civil Engineering
7
作者 ZHAO Jing 《外文科技期刊数据库(文摘版)工程技术》 2021年第5期191-195,共7页
At present, China's economy is in a rising period. Under the background of better and better economy, people's demands for living environment and public facilities have become increasingly high. As a construct... At present, China's economy is in a rising period. Under the background of better and better economy, people's demands for living environment and public facilities have become increasingly high. As a construction industry, the civil engineering industry should transform the needs of the people into its own internal power and strengthen its own construction quality. Only in this way can it promote the rapid development of the industry, meet people's actual needs and contribute to the society. In the civil engineering industry, structural design and construction technology are two common factors, which directly affect the feasibility of civil engineering construction, so enterprises should sort out the relationship between the two, only in this way can they help themselves to obtain better development. 展开更多
关键词 civil engineering building structure design OPTIMIZATION
原文传递
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
8
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Design and optimization of origami-inspired inflatable deployable tubular structures
9
作者 Bo QIN Shengnan LYU +1 位作者 Shiwei LIU Xilun DING 《Chinese Journal of Aeronautics》 2025年第3期645-661,共17页
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ... Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures. 展开更多
关键词 Rigid origamil Inflatable deployable structure Variable volume Multistable configuration Parametric optimization design
原文传递
Swarm intelligence for mixed-variable design optimization 被引量:7
10
作者 郭创新 胡家声 +1 位作者 叶彬 曹一家 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期851-860,共10页
Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal... Many engineering optimization problems frequently encounter continuous variables and discrete variables which adds considerably to the solution complexity. Very few of the existing methods can yield a globally optimal solution when the objective functions are non-convex and non-differentiable. This paper presents a hybrid swarm intelligence ap-proach (HSIA) for solving these nonlinear optimization problems which contain integer, discrete, zero-one and continuous variables. HSIA provides an improvement in global search reliability in a mixed-variable space and converges steadily to a good solution. An approach to handle various kinds of variables and constraints is discussed. Comparison testing of several examples of mixed-variable optimization problems in the literature showed that the proposed approach is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness. 展开更多
关键词 Swarm intelligence Mixed variables Global optimization engineering design optimization
在线阅读 下载PDF
A Knowledge-based and Extensible Aircraft Conceptual Design Environment 被引量:3
11
作者 FENG Haocheng LUO Mingqiang LIU Hu WU Zhe 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第6期709-719,共11页
Design knowledge and experience are the bases to carry out aircraft conceptual design tasks due to the high complexity and integration of the tasks during this phase. When carrying out the same task, different designe... Design knowledge and experience are the bases to carry out aircraft conceptual design tasks due to the high complexity and integration of the tasks during this phase. When carrying out the same task, different designers may need individual strategies to fulfill their own demands. A knowledge-based and extensible method in building aircraft conceptual design systems is studied considering the above requirements. Based on the theory, a knowledge-based aircraft conceptual design environment, called knowledge-based and extensible aircraft conceptual design environment (KEACDE) with open architecture, is built as to enable designers to wrap add-on extensions and make their own aircraft conceptual design systems. The architecture, characteristics and other design and development aspects of KEACDE are discussed. A civil airplane conceptual design system (CACDS) is achieved using KEACDE. Finally, a civil airplane design case is presented to demonstrate the usability and effectiveness of this v environment. 展开更多
关键词 conceptual design knowledge engineering aircraft aerodynamics structural design weight estimation multidisciplinary design optimization
原文传递
Discrete Optimization on Unsteady Pressure Fluctuation of a Centrifugal Pump Using ANN and Modified GA 被引量:2
12
作者 Wenjie Wang Qifan Deng +2 位作者 Ji Pei Jinwei Chen Xingcheng Gan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期242-256,共15页
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial... Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps. 展开更多
关键词 Centrifugal pump Unsteady performance optimization discrete design variable discrete genetic algorithm
在线阅读 下载PDF
Reliability Based Design Optimization of Aero-Engine Spindle Ball Bearings 被引量:2
13
作者 杨静 孟德彪 +2 位作者 张小玲 汪忠来 许焕卫 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期853-855,共3页
Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliabilit... Aero-engine spindle ball bearings work in harsh conditions which are affected by relatively complex stresses. One of the key factors which affects bearing performance is its structure. In this paper,we used reliability based design optimization method to solve the structure design problem of aero-engine spindle ball bearings.Compared with the optimization design method, the value of equivalent dynamic load using reliability optimization design method was the least by MATLAB simulation. Also the design solutions show that the optimized structure possesses higher reliability than the original solution. 展开更多
关键词 aero-engine spindle ball bearing complex stresses reliability based design optimization structure design
在线阅读 下载PDF
A COMBINAT0RIAL ALGORITHM FOR THE DISCRETE OPTIMIZATION OF STRUCTURES
14
作者 柴山 孙焕纯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第9期847-856,共10页
The definition of local optimum solution of the discrete optimization is first given.and then a comprehensive combinatorial algorithm is proposed in this paper. Two-leveloptimum method is used in the algorithm. In t... The definition of local optimum solution of the discrete optimization is first given.and then a comprehensive combinatorial algorithm is proposed in this paper. Two-leveloptimum method is used in the algorithm. In the first level optimization, anapproximate local optimum solution X is found by using the heuristic algorithm,relative difference quotient algorithm. with high computational efficiency and highperformance demonstrated by the performance test of random samples. In the secondlevel, a mathematical model of (- 1, 0, 1) programming is established first, and then itis changed into (0, 1) programming model. The local optimum solution X will befrom the (0. 1) programming by using the delimitative and combinatorial algorithm orthe relative difference quotient algorithm. By this algorithm, the local optimumsolution can be obtained certainly, and a method is provnded to judge whether or notthe approximate optimum solution obtained by heuristic algorithm is an optimumsolution. The above comprehensive combinatorial algorithm has higher computationalefficiency. 展开更多
关键词 discrete variables structural optimization combinatorial optimization local optimum solution
在线阅读 下载PDF
Cost-optimization based target reliabilities for design of structures exposed to fire 被引量:1
15
作者 Ranjit Kumar Chaudhary Thomas Gernay Ruben Van Coile 《Resilient Cities and Structures》 2024年第2期20-33,共14页
Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,howev... Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards. 展开更多
关键词 Target reliability Cost optimization Life-cycle cost structural fire engineering design code
在线阅读 下载PDF
Failure mechanism of directional roof cutting and design method optimization
16
作者 HOU Shilin YANG Jun +5 位作者 WANG Yajun CHEN Kuikui ZHANG Jun HE Manchao YANG Gang CHEN Gonghua 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3898-3912,共15页
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma... Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method. 展开更多
关键词 Directional roof cutting Roof structure Failure mechanism Numerical simulation Optimized design method engineering verification
原文传递
Topological Design via a Rule Based Genetic Optimization Algorithm
17
作者 David Webb Qian Liu +1 位作者 Wissam Alobaidi Eric Sandgren 《American Journal of Computational Mathematics》 2017年第3期291-320,共30页
A topological structural design approach is presented which is based upon the implementation of a two phase evolutionary optimization algorithm in conjunction with a finite element analysis code. The first phase utili... A topological structural design approach is presented which is based upon the implementation of a two phase evolutionary optimization algorithm in conjunction with a finite element analysis code. The first phase utilizes a conventional genetic approach which performs a global search for the optimal design topology. Dual level material properties are specified within the genetic encoding and are applied to each individual element in the design mesh to represent either design material or a void. The second phase introduces a rule based refinement which allows for user design intent to accelerate the solution process and eliminate obvious design discrepancies resulting from the phase one search. A series of plate design problems are presented where the objective is to minimize the overall volume of the structure under predefined loading and constraint conditions. The constraints include both stress and deflection considerations where stress is calculated through the use of a commercial finite element package. The initial plate example incorporates a coarse mesh, but a gradual decrease in element size was employed for the remaining cases examined. Replacement of the phase one search with a set of randomly generated designs is demonstrated in order to form a greatly reduced design space which drastically increases the efficiency of the solution process. Comparison results are drawn between the conventional genetic algorithm and the two phase procedure. 展开更多
关键词 TOPOLOGICAL design structural OPTIMIZATION GENETIC OPTIMIZATION VARIABLE Material design
暂未订购
A Mixed-Variable Experimental Design Method
18
作者 Zili Wan Qi Wang 《Open Journal of Applied Sciences》 2024年第2期343-352,共10页
Mixed-variable problems are inevitable in engineering. However, few researches pay attention to discrete variables. This paper proposed a mixed-variable experimental design method (ODCD): first, the design variables w... Mixed-variable problems are inevitable in engineering. However, few researches pay attention to discrete variables. This paper proposed a mixed-variable experimental design method (ODCD): first, the design variables were divided into discrete variables and continuous variables;then, the DVD method was employed for handling discrete variables, the LHD method was applied for continuous variables, and finally, a Columnwise-Pairwise Algorithm was used for the overall optimization of the design matrix. Experimental results demonstrated that the ODCD method outperforms in terms of the sample space coverage performance. 展开更多
关键词 OPTIMIZATION Experimental design Methods discrete Variable
在线阅读 下载PDF
机械-惯性载荷作用下航发齿轮传动壳体拓扑优化
19
作者 黄昊 夏静贵 +2 位作者 吴俊佑 卢泽华 刘怀举 《重庆大学学报》 北大核心 2025年第5期15-27,共13页
航发齿轮传动机匣在恶劣服役工况和复杂载荷条件下,要求壳体具备轻量化特征,轴承孔错位量作为机匣的关键评价指标,如何保证错位量同时实现轻量化成为一大挑战。文中基于SIMP插值惩罚模型提出了一种考虑机械-惯性载荷作用的航发齿轮传动... 航发齿轮传动机匣在恶劣服役工况和复杂载荷条件下,要求壳体具备轻量化特征,轴承孔错位量作为机匣的关键评价指标,如何保证错位量同时实现轻量化成为一大挑战。文中基于SIMP插值惩罚模型提出了一种考虑机械-惯性载荷作用的航发齿轮传动壳体拓扑优化方法,将惯性过载对机匣附件所产生的影响加入优化模型,以壳体应力、危险轴承孔中心错位量和优化区域体积分数为约束条件,不同工况下的壳体加权柔顺度最小为目标,实现壳体减重7.1%的同时,Von Mises应力、变形量和危险轴承孔中心错位量最大分别下降7.1%、3.1%和12.1%。 展开更多
关键词 航空发动机 附件机匣 结构设计 齿轮传动 拓扑优化
在线阅读 下载PDF
巴哈越野赛车车架结构设计与工程结构分析
20
作者 尚家杰 杨智杰 +1 位作者 原言和 迟媛 《机械设计与制造》 北大核心 2025年第9期225-228,232,共5页
在保证车架设计结构安全、合理的前提下,依据BSC(Baja SAE China中国汽车工程学会巴哈大赛)赛事规则,设计一款赛车车架结构。因其特有桁架结构及受力复杂,为保证设计过程中有效控制强度和刚度,运用CATIA建模,利用ANSYS中Workbench模块... 在保证车架设计结构安全、合理的前提下,依据BSC(Baja SAE China中国汽车工程学会巴哈大赛)赛事规则,设计一款赛车车架结构。因其特有桁架结构及受力复杂,为保证设计过程中有效控制强度和刚度,运用CATIA建模,利用ANSYS中Workbench模块对优化前后车架分别进行静载及弯曲工况下应力及变形分析。最终计算得到优化后车架弯曲刚度和扭转刚度分别为129030.01N·m^(2)和2962.07N·m/(°)。并运用Modal模块对车架进行自由和约束模态分析,根据分析结果对车架进行优化及对比分析,使赛车车架减重3.274kg。结合比赛实地测试表明,该车架的强度及刚度满足设计要求及相关行业标准。研究方法可为以轻量化和良好人机交互为目标的相关设计进入性能验证阶段提供指导,也为具有同类越野车车架和复杂结构设计及分析提供参考。 展开更多
关键词 巴哈赛车 车架 设计 工程结构 有限元法 优化
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部