The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete(RAC)as an eco-friendly alternative to conventional concrete.However,predicting its compressive st...The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete(RAC)as an eco-friendly alternative to conventional concrete.However,predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters.This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks(FFNN),Random Forest(RF),and XGBoost.A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:Bayesian Regularization,Levenberg-Marquardt,and three conjugate gradient variants—Powell/Beale Restarts,Fletcher-Powell,and Polak-Ribiere.Hyperparameter tuning,dropout regularization,and early stopping were employed to enhance generalization.Comparative analysis revealed that FFNN outperformed RF and XGBoost,achieving an R2 of 0.9669.To ensure interpretability,accumulated local effects(ALE)along with partial dependence plots(PDP)were utilized.This revealed trends consistent with the pre-existent domain knowledge.This allows estimation of strength from the properties of the mix without extensive lab testing,permitting designers to track the performance and sustainability trends in concrete mix designs while promoting responsible construction and demolition waste utilization.展开更多
The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or sec...The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.展开更多
Deep learning has recently attracted a lot of attention with the aim of developing a fast, automatic and accurate system for image identification and classification. In this work, the focus was on transfer learning an...Deep learning has recently attracted a lot of attention with the aim of developing a fast, automatic and accurate system for image identification and classification. In this work, the focus was on transfer learning and evaluation of state-of-the-art VGG16 and 19 deep convolutional neural networks for fire image classification from fire images. In this study, five different approaches (Adagrad, Adam, AdaMax</span><span style="font-family:"">, </span><span style="font-family:"">Nadam and Rmsprop) based on the gradient descent methods used in parameter updating were studied. By selecting specific <span>learning rates, training image base proportions, number of recursion (epochs</span>), the advantages and disadvantages of each approach are compared with each <span>other in order to achieve the minimum cost function. The results of the comparison</span> are presented in the tables. In our experiment, Adam optimizers with the VGG16 architecture with 300 and 500 epochs tend to steadily improve their accuracy with increasing number of epochs without deteriorating performance. The optimizers were evaluated on the basis of their AUC of the ROC curve. It achieves a test accuracy of 96%, which puts it ahead of other architectures.展开更多
Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges,...Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach.展开更多
Hybrid metaheuristic algorithms play a prominent role in improving algorithms'searchability by combining each algorithm's advantages and minimizing any substantial shortcomings.The Quantum-based Avian Navigati...Hybrid metaheuristic algorithms play a prominent role in improving algorithms'searchability by combining each algorithm's advantages and minimizing any substantial shortcomings.The Quantum-based Avian Navigation Optimizer Algorithm(QANA)is a recent metaheuristic algorithm inspired by the navigation behavior of migratory birds.Different experimental results show that QANA is a competitive and applicable algorithm in different optimization fields.However,it suffers from shortcomings such as low solution quality and premature convergence when tackling some complex problems.Therefore,instead of proposing a new algorithm to solve these weaknesses,we use the advantages of the bonobo optimizer to improve global search capability and mitigate premature convergence of the original QANA.The effectiveness of the proposed Hybrid Quantum-based Avian Navigation Optimizer Algorithm(HQANA)is assessed on 29 test functions of the CEC 2018 benchmark test suite with different dimensions,30,50,and 100.The results are then statistically investigated by the Friedman test and compared with the results of eight well-known optimization algorithms,including PSO,KH,GWO,WOA,CSA,HOA,BO,and QANA.Ultimately,five constrained engineering optimization problems from the latest test suite,CEC 2020 are used to assess the applicability of HQANA to solve complex real-world engineering optimization problems.The experimental and statistical findings prove that the proposed HQANA algorithm is superior to the comparative algorithms.展开更多
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt...Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.展开更多
Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen e...Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion...Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced...Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.展开更多
Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may r...Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.展开更多
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje...To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.展开更多
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex...Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.展开更多
Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy...Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.展开更多
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m...The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrain...Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2503)。
文摘The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete(RAC)as an eco-friendly alternative to conventional concrete.However,predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters.This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks(FFNN),Random Forest(RF),and XGBoost.A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:Bayesian Regularization,Levenberg-Marquardt,and three conjugate gradient variants—Powell/Beale Restarts,Fletcher-Powell,and Polak-Ribiere.Hyperparameter tuning,dropout regularization,and early stopping were employed to enhance generalization.Comparative analysis revealed that FFNN outperformed RF and XGBoost,achieving an R2 of 0.9669.To ensure interpretability,accumulated local effects(ALE)along with partial dependence plots(PDP)were utilized.This revealed trends consistent with the pre-existent domain knowledge.This allows estimation of strength from the properties of the mix without extensive lab testing,permitting designers to track the performance and sustainability trends in concrete mix designs while promoting responsible construction and demolition waste utilization.
文摘The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.
文摘Deep learning has recently attracted a lot of attention with the aim of developing a fast, automatic and accurate system for image identification and classification. In this work, the focus was on transfer learning and evaluation of state-of-the-art VGG16 and 19 deep convolutional neural networks for fire image classification from fire images. In this study, five different approaches (Adagrad, Adam, AdaMax</span><span style="font-family:"">, </span><span style="font-family:"">Nadam and Rmsprop) based on the gradient descent methods used in parameter updating were studied. By selecting specific <span>learning rates, training image base proportions, number of recursion (epochs</span>), the advantages and disadvantages of each approach are compared with each <span>other in order to achieve the minimum cost function. The results of the comparison</span> are presented in the tables. In our experiment, Adam optimizers with the VGG16 architecture with 300 and 500 epochs tend to steadily improve their accuracy with increasing number of epochs without deteriorating performance. The optimizers were evaluated on the basis of their AUC of the ROC curve. It achieves a test accuracy of 96%, which puts it ahead of other architectures.
文摘Modern engineering design optimization often relies on computer simulations to evaluate candidate designs, a setup which results in expensive black-box optimization problems. Such problems introduce unique challenges, which has motivated the application of metamodel-assisted computational intelligence algorithms to solve them. Such algorithms combine a computational intelligence optimizer which employs a population of candidate solutions, with a metamodel which is a computationally cheaper approximation of the expensive computer simulation. However, although a variety of metamodels and optimizers have been proposed, the optimal types to employ are problem dependant. Therefore, a priori prescribing the type of metamodel and optimizer to be used may degrade its effectiveness. Leveraging on this issue, this study proposes a new computational intelligence algorithm which autonomously adapts the type of the metamodel and optimizer during the search by selecting the most suitable types out of a family of candidates at each stage. Performance analysis using a set of test functions demonstrates the effectiveness of the proposed algorithm, and highlights the merit of the proposed adaptation approach.
文摘Hybrid metaheuristic algorithms play a prominent role in improving algorithms'searchability by combining each algorithm's advantages and minimizing any substantial shortcomings.The Quantum-based Avian Navigation Optimizer Algorithm(QANA)is a recent metaheuristic algorithm inspired by the navigation behavior of migratory birds.Different experimental results show that QANA is a competitive and applicable algorithm in different optimization fields.However,it suffers from shortcomings such as low solution quality and premature convergence when tackling some complex problems.Therefore,instead of proposing a new algorithm to solve these weaknesses,we use the advantages of the bonobo optimizer to improve global search capability and mitigate premature convergence of the original QANA.The effectiveness of the proposed Hybrid Quantum-based Avian Navigation Optimizer Algorithm(HQANA)is assessed on 29 test functions of the CEC 2018 benchmark test suite with different dimensions,30,50,and 100.The results are then statistically investigated by the Friedman test and compared with the results of eight well-known optimization algorithms,including PSO,KH,GWO,WOA,CSA,HOA,BO,and QANA.Ultimately,five constrained engineering optimization problems from the latest test suite,CEC 2020 are used to assess the applicability of HQANA to solve complex real-world engineering optimization problems.The experimental and statistical findings prove that the proposed HQANA algorithm is superior to the comparative algorithms.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2024R809).
文摘Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios.
基金Supported by the National Natural Science Foundation of China(No.52273056)the Science and Technology Development Program of Jilin Province,China(No.YDZJ202501ZYTS305)。
文摘Electrochemical water splitting represents a sustainable technology for hydrogen(H_(2))production.However,its large-scale implementation is hindered by the high overpotentials required for both the cathodic hydrogen evolution reaction(HER)and the anodic oxygen evolution reaction(OER).Transition metal-based catalysts have garnered significant research interest as promising alternatives to noble-metal catalysts,owing to their low cost,tunable composition,and noble-metal-like catalytic activity.Nevertheless,systematic reviews on their application as bifunctional catalysts for overall water splitting(OWS)are still limited.This review comprehensively outlines the principal categories of bifunctional transition metal electrocatalysts derived from electrospun nanofibers(NFs),including metals,oxides,phosphides,sulfides,and carbides.Key strategies for enhancing their catalytic performance are systematically summarized,such as heterointerface engineering,heteroatom doping,metal-nonmetal-metal bridging architectures,and single-atom site design.Finally,current challenges and future research directions are discussed,aiming to provide insightful perspectives for the rational design of high-performance electrocatalysts for OWS.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
文摘Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported by the Hundred-person Program of Chinese Academy of Sciences and the National Natural Science Foundation of China(No.11905074).
文摘Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector.
文摘Community detection is one of the most fundamental applications in understanding the structure of complicated networks.Furthermore,it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships.Networking structures are highly sensitive in social networks,requiring advanced techniques to accurately identify the structure of these communities.Most conventional algorithms for detecting communities perform inadequately with complicated networks.In addition,they miss out on accurately identifying clusters.Since single-objective optimization cannot always generate accurate and comprehensive results,as multi-objective optimization can.Therefore,we utilized two objective functions that enable strong connections between communities and weak connections between them.In this study,we utilized the intra function,which has proven effective in state-of-the-art research studies.We proposed a new inter-function that has demonstrated its effectiveness by making the objective of detecting external connections between communities is to make them more distinct and sparse.Furthermore,we proposed a Multi-Objective community strength enhancement algorithm(MOCSE).The proposed algorithm is based on the framework of the Multi-Objective Evolutionary Algorithm with Decomposition(MOEA/D),integrated with a new heuristic mutation strategy,community strength enhancement(CSE).The results demonstrate that the model is effective in accurately identifying community structures while also being computationally efficient.The performance measures used to evaluate the MOEA/D algorithm in our work are normalized mutual information(NMI)and modularity(Q).It was tested using five state-of-the-art algorithms on social networks,comprising real datasets(Zachary,Dolphin,Football,Krebs,SFI,Jazz,and Netscience),as well as twenty synthetic datasets.These results provide the robustness and practical value of the proposed algorithm in multi-objective community identification.
基金Supported by State Grid Corporation of China Science and Technology Project:Research on Key Technologies for Intelligent Carbon Metrology in Vehicle-to-Grid Interaction(Project Number:B3018524000Q).
文摘To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization.
基金We would like to show gratitude to the Yunnan Province Basic Research Major Project(202501BC070006(Y.Wang))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY ZNT2024002(Y.Wang))+3 种基金National Natural Science Foundation of China(22279070(L.Wang))and(U21A20170(X.He))the Ministry of Science and Technology of China(2019YFA0705703(L.Wang))Beijing Natural Science Foundation(L242005(X.He))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY BSPY2024011(T.Lai)).
文摘Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.
基金financially supported by the National Key Research and Development Program of China (No. 2023YFB3812601)the National Natural Science Foundation of China (No. 51925401)the Young Elite Scientists Sponsorship Program by CAST, China (No. 2022QNRC001)。
文摘Machine learning-assisted methods for rapid and accurate prediction of temperature field,mushy zone,and grain size were proposed for the heating−cooling combined mold(HCCM)horizontal continuous casting of C70250 alloy plates.First,finite element simulations of casting processes were carried out with various parameters to build a dataset.Subsequently,different machine learning algorithms were employed to achieve high precision in predicting temperature fields,mushy zone locations,mushy zone inclination angle,and billet grain size.Finally,the process parameters were quickly optimized using a strategy consisting of random generation,prediction,and screening,allowing the mushy zone to be controlled to the desired target.The optimized parameters are 1234℃for heating mold temperature,47 mm/min for casting speed,and 10 L/min for cooling water flow rate.The optimized mushy zone is located in the middle of the second heat insulation section and has an inclination angle of roughly 7°.
基金supported by the Science and Technology Research Project of Henan Province(242102241055)the Industry-University-Research Collaborative Innovation Base on Automobile Lightweight of“Science and Technology Innovation in Central Plains”(2024KCZY315)the Opening Fund of State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment(GZ2024A03-ZZU).
文摘The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金supported by Key Science and Technology Program of Henan Province,China(Grant Nos.242102210147,242102210027)Fujian Province Young and Middle aged Teacher Education Research Project(Science and Technology Category)(No.JZ240101)(Corresponding author:Dong Yuan).
文摘Vehicle Edge Computing(VEC)and Cloud Computing(CC)significantly enhance the processing efficiency of delay-sensitive and computation-intensive applications by offloading compute-intensive tasks from resource-constrained onboard devices to nearby Roadside Unit(RSU),thereby achieving lower delay and energy consumption.However,due to the limited storage capacity and energy budget of RSUs,it is challenging to meet the demands of the highly dynamic Internet of Vehicles(IoV)environment.Therefore,determining reasonable service caching and computation offloading strategies is crucial.To address this,this paper proposes a joint service caching scheme for cloud-edge collaborative IoV computation offloading.By modeling the dynamic optimization problem using Markov Decision Processes(MDP),the scheme jointly optimizes task delay,energy consumption,load balancing,and privacy entropy to achieve better quality of service.Additionally,a dynamic adaptive multi-objective deep reinforcement learning algorithm is proposed.Each Double Deep Q-Network(DDQN)agent obtains rewards for different objectives based on distinct reward functions and dynamically updates the objective weights by learning the value changes between objectives using Radial Basis Function Networks(RBFN),thereby efficiently approximating the Pareto-optimal decisions for multiple objectives.Extensive experiments demonstrate that the proposed algorithm can better coordinate the three-tier computing resources of cloud,edge,and vehicles.Compared to existing algorithms,the proposed method reduces task delay and energy consumption by 10.64%and 5.1%,respectively.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.