The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversari...The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.展开更多
The Report of the 20th National Congress of the Communist Party of China explicitly emphasized the promotion of educational digitalization.The rapid development of new media in the era of network information has not o...The Report of the 20th National Congress of the Communist Party of China explicitly emphasized the promotion of educational digitalization.The rapid development of new media in the era of network information has not only broadened the horizons of college students but also profoundly transformed the content and methods of ideological and political education.As the frontline of ideological work,colleges and universities in Xinjiang are guided by the Party’s strategy for governing Xinjiang in the new era to advance network ideological and political education.This is of great significance in guiding students to develop correct network literacy and promoting ideological and political education to keep pace with the times.Through methods such as text analysis,questionnaire surveys,and interviews,this paper outlines the concept,characteristics,and value of network ideological and political education in colleges and universities in Xinjiang,analyzes its current development status and existing issues,and proposes optimization paths such as adhering to correct political guidance,highlighting regional characteristics,innovating educational methods,and strengthening subject construction.These efforts aim to fulfill the fundamental task of“cultivating talents with moral integrity”and serve the overall goal of social stability and long-term peace in Xinjiang.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
Seven tourist cities in eastern and western Guangdong were selected as the research objects to establish an evaluation index system of urban comprehensive carrying capacity,and its changing laws were analyzed.It was f...Seven tourist cities in eastern and western Guangdong were selected as the research objects to establish an evaluation index system of urban comprehensive carrying capacity,and its changing laws were analyzed.It was found that the comprehensive carrying capacities of cities in eastern and western Guangdong showed a trend of“first increasing and then decreasing”from 2015 to 2021,and reached the highest point in 2019,but there were significant differences among regions.From the perspective of spatial distribution,the comprehensive carrying capacities of cities in eastern and western Guangdong generally presented the law of high on both sides and low in the middle.In terms of the proportion of comprehensive carrying capacity of tourist cities,the larger part was always the carrying capacity of infrastructure and public services.The value of economic carrying capacity showed a trend of“first increasing and then decreasing”,while the value of environmental carrying capacity was always on the increase,and the value of tourism resources carrying capacity was basically stable.Finally,according to the analysis results,this paper put forward the optimization paths for comprehensive carrying capacities of tourist cities in eastern and western Guangdong from following four aspects:coordinating regional development,rationally utilizing natural resources,adjusting economic structure and adhering to the sustainable development concept.展开更多
With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context o...With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.展开更多
A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional an...A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.展开更多
In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the incre...In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.展开更多
During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control...During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.展开更多
Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and...Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and county economies-have seen their tellers’service quality and operational efficiency directly impact market competitiveness and sustainable development capabilities.This study examines teller performance management in rural commercial banks from a business management perspective.By analyzing structural issues in existing performance management systems and integrating theoretical frameworks with industry case studies,it proposes systematic optimization measures.The research aims to provide practical references for establishing scientific and efficient teller performance management systems in rural commercial banks,thereby enhancing service quality,strengthening talent support,and better serving the rural financial market.展开更多
This paper conducts an in-depth analysis of the integration of excellent traditional Chinese culture into ideological and political education courses in universities. It clarifies its core value, current challenges, a...This paper conducts an in-depth analysis of the integration of excellent traditional Chinese culture into ideological and political education courses in universities. It clarifies its core value, current challenges, and implementation pathways, striving to enhance the grasp of traditional essence, optimize the development paths of ideological and political education in higher education, infuse it with the vitality of the times, and promote its innovative exploration under new circumstances.展开更多
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf...Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate ...In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.展开更多
Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused b...Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.展开更多
Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial c...Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.展开更多
The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool...The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.展开更多
Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in thes...Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA092)the Innovation Project for Graduate Students of Ludong University(Grant No.IPGS2024-048).
文摘The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies.Generative adversarial networks(GANs)emanating in the category of machine learning(ML)frameworks are used to generate and assess the rationality of the data.While their optimization is based on the long short-term memory(LSTM)strategies.In addition to drawing a heat map,the optimal path of two-dimensional(2D)diffusion is simultaneously demonstrated in a stereoscopic space.The results of our simulation are completely consistent with the previous theoretical predictions.
基金Social Science Fund Project of the Xinjiang Uygur Autonomous Region“Research on the Construction of Network Ideological Discourse Power in Colleges and Universities in Xinjiang”(2023BKS010)。
文摘The Report of the 20th National Congress of the Communist Party of China explicitly emphasized the promotion of educational digitalization.The rapid development of new media in the era of network information has not only broadened the horizons of college students but also profoundly transformed the content and methods of ideological and political education.As the frontline of ideological work,colleges and universities in Xinjiang are guided by the Party’s strategy for governing Xinjiang in the new era to advance network ideological and political education.This is of great significance in guiding students to develop correct network literacy and promoting ideological and political education to keep pace with the times.Through methods such as text analysis,questionnaire surveys,and interviews,this paper outlines the concept,characteristics,and value of network ideological and political education in colleges and universities in Xinjiang,analyzes its current development status and existing issues,and proposes optimization paths such as adhering to correct political guidance,highlighting regional characteristics,innovating educational methods,and strengthening subject construction.These efforts aim to fulfill the fundamental task of“cultivating talents with moral integrity”and serve the overall goal of social stability and long-term peace in Xinjiang.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金Sponsored by The Special Projects in Key Areas of General Colleges and Universities in Guangdong Province(2022ZDZX4057)Innovation Team Project of Colleges and Universities in Guangdong Province(2023WCXTD021)The Educational Science Planning Project of Guangdong Province(2022GXJK355).
文摘Seven tourist cities in eastern and western Guangdong were selected as the research objects to establish an evaluation index system of urban comprehensive carrying capacity,and its changing laws were analyzed.It was found that the comprehensive carrying capacities of cities in eastern and western Guangdong showed a trend of“first increasing and then decreasing”from 2015 to 2021,and reached the highest point in 2019,but there were significant differences among regions.From the perspective of spatial distribution,the comprehensive carrying capacities of cities in eastern and western Guangdong generally presented the law of high on both sides and low in the middle.In terms of the proportion of comprehensive carrying capacity of tourist cities,the larger part was always the carrying capacity of infrastructure and public services.The value of economic carrying capacity showed a trend of“first increasing and then decreasing”,while the value of environmental carrying capacity was always on the increase,and the value of tourism resources carrying capacity was basically stable.Finally,according to the analysis results,this paper put forward the optimization paths for comprehensive carrying capacities of tourist cities in eastern and western Guangdong from following four aspects:coordinating regional development,rationally utilizing natural resources,adjusting economic structure and adhering to the sustainable development concept.
基金supported by Second Batch of Curriculum Assessment Reform Pilot Project of Sanya University,(SYJGKH2023029)。
文摘With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.
基金The National Key Technology R&D Program of China during the 11th Five Year Plan Period(No.2008BAJ11B01)
文摘A solution to compute the optimal path based on a single-line-single-directional(SLSD)road network model is proposed.Unlike the traditional road network model,in the SLSD conceptual model,being single-directional and single-line style,a road is no longer a linkage of road nodes but abstracted as a network node.Similarly,a road node is abstracted as the linkage of two ordered single-directional roads.This model can describe turn restrictions,circular roads,and other real scenarios usually described using a super-graph.Then a computing framework for optimal path finding(OPF)is presented.It is proved that classical Dijkstra and A algorithms can be directly used for OPF computing of any real-world road networks by transferring a super-graph to an SLSD network.Finally,using Singapore road network data,the proposed conceptual model and its corresponding optimal path finding algorithms are validated using a two-step optimal path finding algorithm with a pre-computing strategy based on the SLSD road network.
文摘In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.
基金supported by the National Natural Science Foundation of China(No.51974131)Hebei Outstanding Youth Fund Project(No.E2020209082),Tangshan Key R&D Program project(No.22150232J)Sixth Division Wujiaqu City Science and Technology Plan Project(2410).
文摘During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.
文摘Amid the deepening implementation of rural revitalization strategies and rapid fintech development,rural commercial banks-core financial institutions serving agriculture,rural areas,and farmers(the“three rurals”)and county economies-have seen their tellers’service quality and operational efficiency directly impact market competitiveness and sustainable development capabilities.This study examines teller performance management in rural commercial banks from a business management perspective.By analyzing structural issues in existing performance management systems and integrating theoretical frameworks with industry case studies,it proposes systematic optimization measures.The research aims to provide practical references for establishing scientific and efficient teller performance management systems in rural commercial banks,thereby enhancing service quality,strengthening talent support,and better serving the rural financial market.
文摘This paper conducts an in-depth analysis of the integration of excellent traditional Chinese culture into ideological and political education courses in universities. It clarifies its core value, current challenges, and implementation pathways, striving to enhance the grasp of traditional essence, optimize the development paths of ideological and political education in higher education, infuse it with the vitality of the times, and promote its innovative exploration under new circumstances.
基金This work was partially supported by National Key R&D Program of China(2019YFB1312400)Shenzhen Key Laboratory of Robotics Perception and Intelligence(ZDSYS20200810171800001)+1 种基金Hong Kong RGC GRF(14200618)Hong Kong RGC CRF(C4063-18G).
文摘Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
基金Natural Science Foundation of Gansu Provincial Science&Technology Department(No.1504GKCA018)。
文摘In order to alleviate urban traffic congestion and provide fast vehicle paths,a hidden Markov model(HMM)based on multi-feature data of urban regional roads is constructed to solve the problems of low recognition rate and poor instability of traditional model algorithms.At first,the HHM is obtained by training.Then according to dynamic planning principle,the traffic states of intersections are obtained by the Viterbi algorithm.Finally,the optimal path is selected based on the obtained traffic states of intersections.The experiment results show that the proposed method is superior to other algorithms in road unobstruction rate and recognition rate under complex road conditions.
基金Projects(72071202,71671184)supported by the National Natural Science Foundation of ChinaProject(22YJCZH144)supported by Humanities and Social Sciences Youth Foundation,Ministry of Education of China+3 种基金Project(2022M712680)supported by Postdoctoral Research Foundation of ChinaProject(22KJB110027)supported by Natural Science Foundation of Colleges and Universities in Jiangsu Province,ChinaProject(D2019046)supported by Initiation Foundation of Xuzhou Medical University,ChinaProject(2021SJA1079)supported by General Project of Philosophy and Social Science Research in Jiangsu Universities,China。
文摘Consideration of the travel time variation for rescue vehicles is significant in the field of emergency management research.Because of uncertain factors,such as the weather or OD(origin-destination)variations caused by traffic accidents,travel time is a random variable.In emergency situations,it is particularly necessary to determine the optimal reliable route of rescue vehicles from the perspective of uncertainty.This paper first proposes an optimal reliable path finding(ORPF)model for rescue vehicles,which considers the uncertainties of travel time,and link correlations.On this basis,it investigates how to optimize rescue vehicle allocation to minimize rescue time,taking into account travel time reliability under uncertain conditions.Because of the non-additive property of the objective function,this paper adopts a heuristic algorithm based on the K-shortest path algorithm,and inequality techniques to tackle the proposed modified integer programming model.Finally,the numerical experiments are presented to verify the accuracy and effectiveness of the proposed model and algorithm.The results show that ignoring travel time reliability may lead to an over-or under-estimation of the effective travel time of rescue vehicles on a particular path,and thereby an incorrect allocation scheme.
基金Supported by National Natural Science Foundation of China(Grant No.50935003)National Numerical Control Major Projects of China(Grant No.2013ZX04001000215)
文摘Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.
文摘The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space,low power consumption,and excellent flexibility.However,the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining.In the process of ship construction,the performance of the parts’protective coating needs to bemachined tomeet the Performance Standard of Protective Coatings(PSPC).The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle,greatly reducing machining quality and efficiency.There have been some studies on singleobjective optimization of redundant variables,However,the quality and efficiency of milling are not affected by a single factor,it is usually influenced by several factors,such as the manipulator stiffness,the joint motion smoothness,and the energy consumption.To solve this problem,this paper proposed a new path optimization method for the industrial robot when it is used for five-axis machining.The path smoothness performance index and the energy consumption index are established based on the joint acceleration and the joint velocity,respectively.The path planning issue is formulated as a constrained multi-objective optimization problem by taking into account the constraints of joint limits and singularity avoidance.Then,the path is split into multiple segments for optimization to avoid the slow convergence rate caused by the high dimension.An algorithm combining the non-dominated sorting genetic algorithm(NSGA-II)and the differential evolution(DE)algorithm is employed to solve the above optimization problem.The simulations validate the effectiveness of the algorithm,showing the improvement of smoothness and the reduction of energy consumption.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK20211037)the Science and Technology Development Fund of Wuxi (N20201011)the Nanjing University of Information Science and Technology Wuxi Campus District graduate innovation Project。
文摘Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.