The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sic...The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sichuan Basin.The fracture propagation and inter-well interference model were established based on the evolution of 4D in-situ stress,and the evolution characteristics of stress and the mechanism of interference between wells were analyzed.The research shows that the increase in horizontal stress difference and the existence of natural fractures/faults are the main reasons for inter-well interference.Inter-well interference is likely to occur near the fracture zones and between the infill wells and parent wells that have been in production for a long time.When communication channels are formed between the infill wells and parent wells,it can increase the productivity of parent wells in the short term.However,it will have a delayed negative impact on the long-term sustained production of both infill wells and parent wells.The change trend of in-situ stress caused by parent well production is basically consistent with the decline trend of pore pressure.The lateral disturbance range of in-situ stress is initially the same as the fracture length and reaches 1.5 to 1.6 times that length after 2.5 years.The key to avoiding inter-well interference is to optimize the fracturing parameters.By adopting the M-shaped well pattern,the optimal well spacing for the infill wells is 300 m,the cluster spacing is 10 m,and the liquid volume per stage is 1800 m^(3).展开更多
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr...This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability.展开更多
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ...Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.展开更多
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an...Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi...Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important展开更多
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction pa...Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ...The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.展开更多
As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is ...As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design(CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135 di lathe cutting of AISI 1045 steel, and NSGA-Ⅱ was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.展开更多
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ...In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.展开更多
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at...The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameter...Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.展开更多
We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experime...We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped 199Hg+ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped 199Hg+ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard.展开更多
In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was establis...In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.展开更多
Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose...Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time.展开更多
基金Supported by the General Program of the NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA(52374004)National Key Research and Development Program(2023YFF06141022023YFE0110900)。
文摘The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sichuan Basin.The fracture propagation and inter-well interference model were established based on the evolution of 4D in-situ stress,and the evolution characteristics of stress and the mechanism of interference between wells were analyzed.The research shows that the increase in horizontal stress difference and the existence of natural fractures/faults are the main reasons for inter-well interference.Inter-well interference is likely to occur near the fracture zones and between the infill wells and parent wells that have been in production for a long time.When communication channels are formed between the infill wells and parent wells,it can increase the productivity of parent wells in the short term.However,it will have a delayed negative impact on the long-term sustained production of both infill wells and parent wells.The change trend of in-situ stress caused by parent well production is basically consistent with the decline trend of pore pressure.The lateral disturbance range of in-situ stress is initially the same as the fracture length and reaches 1.5 to 1.6 times that length after 2.5 years.The key to avoiding inter-well interference is to optimize the fracturing parameters.By adopting the M-shaped well pattern,the optimal well spacing for the infill wells is 300 m,the cluster spacing is 10 m,and the liquid volume per stage is 1800 m^(3).
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202401501,KJZD-M202401501).
文摘This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability.
基金funded by the National Key R&D Program“Transportation Infrastructure”project(No.2022YFB2603400)the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the National project pre research project of Suzhou City University(No.2023SGY019).
文摘Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.
基金supported by the National Key R&D Program of China(No.2022YFA1005204l)。
文摘Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
基金Project(9140A12060110BQ03)supported by the National Key Laboratory of Science and Technology on Materials under Shock and Impact,China
文摘Electroless copper plating on diamond particles precoated with 1%Cr was carried out to evaluate the effects of various experimental parameters on coating quality and deposition rate to obtain the optimized reaction parameters. The formulated samples under optimized parameters were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectra and optical microscopy. The best parameters, where uniform and maximum coating thickness was achieved, are etching with 20%NaOH for 30 min, sensitization and activation with SnCl2 and PdCl2 for 5 and 20 min, respectively. The composition of the copper solution bath was 16 g/L CuSO4·5H2O, 35 mL/L formaldehyde (HCHO), 23 g/L KNaC4H4O6 at 60 ℃, pH=13 and stirring at (350±15) r/min under ultrasonication.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.
基金supported by National Natural Science Foundation of China (Grant No. 51005207)Open Foundation of the Mechanical Engineering in Zhejiang University of Technology, China (Grant No.2009EP004)Foundation of Zhejiang Provincial Education Department of China (Grant No. Y200908129)
文摘The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2014AA041503)National Natural Science Foundation of China(Key Program,Grant No.51235003)
文摘As the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design(CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135 di lathe cutting of AISI 1045 steel, and NSGA-Ⅱ was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951102)the National Supporting Plan Program of China (Grants No.2007BAB28B01 and 2008BAB42B03)the National Natural Science Foundation of China (Grant No. 50709042),and the Regional Water Theme in the Water for a Healthy Country Flagship
文摘In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates.
基金financially supported by the National Natural Science Foundation of China(No.51371152)
文摘The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
文摘Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074282 and 11474320
文摘We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped 199Hg+ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped 199Hg+ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard.
基金National Natural Science Foundation of China(No.61463015)
文摘In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.
基金The authors received funding source for this research activity under Multi-Disciplinary Research(MDR)Grant Vot H483 from Research Management Centre(RMC)office,Universiti Tun Hussein Onn Malaysia(UTHM).
文摘Plant disease classification based on digital pictures is challenging.Machine learning approaches and plant image categorization technologies such as deep learning have been utilized to recognize,identify,and diagnose plant diseases in the previous decade.Increasing the yield quantity and quality of rice forming is an important cause for the paddy production countries.However,some diseases that are blocking the improvement in paddy production are considered as an ominous threat.Convolution Neural Network(CNN)has shown a remarkable performance in solving the early detection of paddy leaf diseases based on its images in the fast-growing era of science and technology.Nevertheless,the significant CNN architectures construction is dependent on expertise in a neural network and domain knowledge.This approach is time-consuming,and high computational resources are mandatory.In this research,we propose a novel method based on Mutant Particle swarm optimization(MUT-PSO)Algorithms to search for an optimum CNN architecture for Paddy leaf disease classification.Experimentation results show that Mutant Particle swarm optimization Convolution Neural Network(MUTPSO-CNN)can find optimumCNNarchitecture that offers better performance than existing hand-crafted CNN architectures in terms of accuracy,precision/recall,and execution time.