期刊文献+
共找到906篇文章
< 1 2 46 >
每页显示 20 50 100
Implementation of Radial Basis Function Artificial Neural Network into an Adaptive Equivalent Consumption Minimization Strategy for Optimized Control of a Hybrid Electric Vehicle 被引量:2
1
作者 Thomas P. Harris Andrew C. Nix +3 位作者 Mario G. Perhinschi W. Scott Wayne Jared A. Diethorn Aaron R. Mull 《Journal of Transportation Technologies》 2021年第4期471-503,共33页
Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><spa... Continued increases in the emission of greenhouse gases by passenger ve<span style="font-family:Verdana;">hicles ha</span><span style="font-family:Verdana;">ve</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> accelerated the production of hybrid electric vehicles. With this increase in production, there has been a parallel demand for continuously improving strategies of hybrid electric vehicle control. The goal of an ideal control strategy is to maximize fuel economy while minimizing emissions. Methods exist by which the globally optimal control strategy may be found. However, these methods are not applicable in real-world driving applications since these methods require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the upcoming drive cycle. Real-time control strategies use the global optimal as a benchmark against which performance can be evaluated. The goal of this work is to use a previously defined strategy that has been shown to closely approximate the global optimal and implement a radial basis function (RBF) artificial neural network (ANN) that dynamically adapts the strategy based on past driving conditions. The strate</span><span style="font-family:Verdana;">gy used is the Equivalent Consumption Minimization Strategy (ECMS),</span><span style="font-family:Verdana;"> which uses an equivalence factor to define the control strategy and the power train </span><span style="font-family:Verdana;">component torque split. An equivalence factor that is optimal for a single</span><span style="font-family:Verdana;"> drive cycle can be found offline</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">with </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> knowledge of the drive cycle. The RBF-ANN is used to dynamically update the equivalence factor by examining a past time window of driving characteristics. A total of 30 sets of training data (drive cycles) are used to train the RBF-ANN. For the majority of drive cycles examined, the RBF-ANN implementation is shown to produce fuel economy values that are within ±2.5% of the fuel economy obtained with the optimal equivalence factor. The advantage of the RBF-ANN is that it does not require </span><i><span style="font-family:Verdana;">a</span></i> <i><span style="font-family:Verdana;">priori</span></i><span style="font-family:Verdana;"> drive cycle knowledge and is able to be implemented in real-time while meeting or exceeding the performance of the optimal ECMS. Recommendations are made on how the RBF-ANN could be improved to produce better results across a greater array of driving conditions.</span></span> 展开更多
关键词 Hybrid Electric Vehicle Artificial Neural Network Equivalent Consumption Minimization Strategy (ECMS) Optimal control Strategy
在线阅读 下载PDF
An Optimized Control Method for Firing Angle of Hybrid Line Commutated Converter During AC Faults
2
作者 Jianchao Ma Xiaoping Zhou +7 位作者 Lingfeng Deng Lerong Hong Hanting Peng Yizhen Hu Lei Zhang Fenfen Zhu Haitao Xia Honglin Ouyang 《Journal of Modern Power Systems and Clean Energy》 2025年第3期1102-1112,共11页
The introduction of fully controlled devices to build hybrid line commutated converter(H-LCC)has become a new idea to solve the commutation failure.However,existing H-LCC has not considered the implementation of a tar... The introduction of fully controlled devices to build hybrid line commutated converter(H-LCC)has become a new idea to solve the commutation failure.However,existing H-LCC has not considered the implementation of a targeted firing angle control strategy during AC faults,with the objective of enhancing their power transmission and fault response performance.For this reason,this paper proposes an optimized control method for firing angle of H-LCC,designated as flexible virtual firing(FVF).This method first analyzes the influence of alterations in firing angle on reactive power,commutation process and associated action paths.By combining prediction and dynamic search,it optimizes the natural commutation process through the utilization of dynamic boundary and minimum commutation area difference.This can mitigate the impact of AC faults on H-LCC and DC system,thereby improving power transmission and defense to commutation failure,which is beneficial for improving the stability of AC/DC power grids.Finally,the simulation results in PSCAD/EMTDC verify the effectiveness of the proposed method. 展开更多
关键词 Commutation failure fully controlled device firing angle optimization optimal control hybrid line commutated converter
原文传递
Human-AI interactive optimized shared control
3
作者 Junkai Tan Shuangsi Xue +1 位作者 Hui Cao Shuzhi Sam Ge 《Journal of Automation and Intelligence》 2025年第3期163-176,共14页
This paper presents an optimized shared control algorithm for human–AI interaction, implemented through a digital twin framework where the physical system and human operator act as the real agent while an AI-driven d... This paper presents an optimized shared control algorithm for human–AI interaction, implemented through a digital twin framework where the physical system and human operator act as the real agent while an AI-driven digital system functions as the virtual agent. In this digital twin architecture, the real agent acquires an optimal control strategy through observed actions, while the AI virtual agent mirrors the real agent to establish a digital replica system and corresponding control policy. Both the real and virtual optimal controllers are approximated using reinforcement learning(RL) techniques. Specifically, critic neural networks(NNs) are employed to learn the virtual and real optimal value functions, while actor NNs are trained to derive their respective optimal controllers. A novel shared mechanism is introduced to integrate both virtual and real value functions into a unified learning framework, yielding an optimal shared controller. This controller adaptively adjusts the confidence ratio between virtual and real agents, enhancing the system's efficiency and flexibility in handling complex control tasks. The stability of the closed-loop system is rigorously analyzed using the Lyapunov method. The effectiveness of the proposed AI–human interactive system is validated through two numerical examples: a representative nonlinear system and an unmanned aerial vehicle(UAV) control system. 展开更多
关键词 Human-Alinteraction Digital-twin system Adaptive dynamic programming(ADP) DATA-DRIVEN Optimal shared control
在线阅读 下载PDF
Reinforcement learning based optimized backstepping control for hypersonic vehicles with disturbance observer
4
作者 Haoyu CHENG Xin LIU +2 位作者 Xiaoxi LIANG Xiaoyan ZHANG Shaoyi LI 《Chinese Journal of Aeronautics》 2025年第11期413-437,共25页
This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address com... This paper introduces an optimized backstepping control method for Flexible Airbreathing Hypersonic Vehicles(FAHVs).The approach incorporates nonlinear disturbance observation and reinforcement learning to address complex control challenges.The Minimal Learning Parameter(MLP)technique is applied to manage unknown nonlinear dynamics,significantly reducing the computational load usually associated with Neural Network(NN)weight updates.To improve the control system robustness,an MLP-based nonlinear disturbance observer is designed,which estimates lumped disturbances,including flexibility effects,model uncertainties,and external disruptions within the FAHVs.In parallel,the control strategy integrates reinforcement learning using an MLP-based actor-critic framework within the backstepping design to achieve both optimality and robustness.The actor performs control actions,while the critic assesses the optimal performance index function.To minimize this index function,an adaptive gradient descent method constructs both the actor and critic.Lyapunov analysis is employed to demonstrate that all signals in the closed-loop system are semiglobally uniformly ultimately bounded.Simulation results confirm that the proposed control strategy delivers high control performance,marked by improved accuracy and reduced energy consumption. 展开更多
关键词 Hypersonic vehicles Minimal learning parameter Nonlinear disturbance observer optimized backstepping control Reinforcement learning
原文传递
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
5
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Application of digital twin for industrial process control:A case study of gauge-looper-tension optimized control in strip hot rolling
6
作者 Jie Sun Shang Chen +2 位作者 Cheng-yan Ding Wen Peng Dian-hua Zhang 《Digital Twin》 2025年第1期139-157,共19页
During the hot rolling process,the performance of most control systems gradually degrades due to equipment aging and changing process conditions.However,existing gauge-looper-tension control method remain restricted b... During the hot rolling process,the performance of most control systems gradually degrades due to equipment aging and changing process conditions.However,existing gauge-looper-tension control method remain restricted by a lack of intelligent parameter maintenance strategies.To address this challenge and enhance the smart manufacturing capabilities of strip hot rolling,based on the digital twin method,this paper proposes a data-driven optimized control method for the gauge-looper-tension system of strip hot rolling.First,a hot rolling process model is constructed based on a digital twin method to serve as an evaluation and optimization platform.Subsequently,relevant data are collected to calculate the Hurst index for identifying the performance of the controller during the rolling process.Additionally,for controllers with poor Hurst index values,the crayfish optimization algorithm is employed for adjusting controller parameters to maximize the Hurst index.Experimental results demonstrate that the evaluation method effectively recognized the control state of gauge-looper-tension system and the optimization method successfully enhances the performance of the control system.Therefore,based on the digital twin platform,the proposed method can effectively maintain performance-degraded control systems. 展开更多
关键词 Digital twin Hot rolling processing control performance evaluation control performance optimization gauge-looper-tension controller
在线阅读 下载PDF
Output-Feedback Based Simplified Optimized Backstepping Control for Strict-Feedback Systems with Input and State Constraints 被引量:11
7
作者 Jiaxin Zhang Kewen Li Yongming Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1119-1132,共14页
In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neu... In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Backstepping design immeasurable states neuralnetworks(NNs) optimal control state constraints
在线阅读 下载PDF
Optimized model-based control of main mine ventilation air flows with minimized energy consumption 被引量:7
8
作者 S.Sjostrom E.Klintenas +1 位作者 P.Johansson J.Nyqvist 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期533-539,共7页
In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma... In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors. 展开更多
关键词 Mine ventilation Ventilation on demand optimized model-based control Minimized energy consumption Advanced process control
在线阅读 下载PDF
A mathematical model for optimized operation and controlin a CDQ-Boiler system 被引量:1
9
作者 De Wang Tao Yang +4 位作者 Zhi Wen Junxiao Feng Ning Kong Qin Wang Weimin Wang 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期390-393,共4页
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical mode... Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved. 展开更多
关键词 coke dry quenching-boiler system optimized operation and control mathematical model
在线阅读 下载PDF
Rapid optimal control law generation: an MoE based method 被引量:1
10
作者 ZHANG Tengfei SU Hua +2 位作者 GONG Chunlin YANG Sizhi BAI Shaobo 《Journal of Systems Engineering and Electronics》 2025年第1期280-291,共12页
To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target... To better complete various missions, it is necessary to plan an optimal trajectory or provide the optimal control law for the multirole missile according to the actual situation, including launch conditions and target location. Since trajectory optimization struggles to meet real-time requirements, the emergence of data-based generation methods has become a significant focus in contemporary research. However, due to the large differences in the characteristics of the optimal control laws caused by the diversity of tasks, it is difficult to achieve good prediction results by modeling all data with one single model.Therefore, the modeling idea of the mixture of experts(MoE) is adopted. Firstly, the K-means clustering algorithm is used to partition the sample data set, and the corresponding neural network classification model is established as the gate switch of MoE. Then, the expert models, i.e., the mappings from the generation conditions to the optimal control law represented by the results of principal component analysis(PCA), are represented by Kriging models. Finally, multiple rounds of accuracy evaluation, sample supplementation, and model updating are conducted to improve the generation accuracy. The Monte Carlo simulation shows that the accuracy of the proposed model reaches 96% and the generation efficiency meets the real-time requirement. 展开更多
关键词 optimal control mixture of experts(MoE) K-MEANS Kriging model neural network classification principal component analysis(PCA)
在线阅读 下载PDF
Constrained Networked Predictive Control for Nonlinear Systems Using a High-Order Fully Actuated System Approach 被引量:1
11
作者 Yi Huang Guo-Ping Liu +1 位作者 Yi Yu Wenshan Hu 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期478-480,共3页
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv... Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system. 展开更多
关键词 optimal control problem constrained networked predictive control strategy Performance Optimization present upper bound Nonlinear Systems NOISES Constrained Networked Predictive control High Order Fully Actuated Systems
在线阅读 下载PDF
Enhanced VOC emission with increased temperature contributes to the shift of O_(3)-precursors relationship and optimal control strategy 被引量:2
12
作者 Fangqi Qu Yuanjie Huang +11 位作者 Yemin Shen Genqiang Zhong Yan Xu Lingling Jin Hongtao Qian Chun Xiong Fei Zhang Jiasi Shen Bingye Xu Xudong Tian Zhengning Xu Zhibin Wang 《Journal of Environmental Sciences》 2025年第4期218-229,共12页
Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precurs... Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city. 展开更多
关键词 O_(3)pollution Volatile organic compounds Photochemical box model Source apportionment Optimal O_(3)control strategies
原文传递
Fast Ion Gates without the Lamb-Dicke Approximation by Robust Quantum Optimal Control
13
作者 Ran Liu Xiaodong Yang +2 位作者 Yiheng Lin Yao Lu Jun Li 《Chinese Physics Letters》 2025年第8期75-82,共8页
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ... We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments. 展开更多
关键词 quantum optimal control framework gradient based optimal control quantum computation Lamb Dicke approximation fast ion gates tailored laser pulses entangling gates robust quantum optimal control
原文传递
Optimal Control of Unknown Collective Spin Systems via a Neural Network Surrogate
14
作者 Yaofeng Chen Li You 《Chinese Physics Letters》 2025年第10期117-128,共12页
Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this wor... Quantum optimal control(QOC)relies on accurately modeling system dynamics and is often challenged by unknown or inaccessible interactions in real systems.Taking an unknown collective spin system as an example,this work introduces a machine-learning-based,data-driven scheme to overcome the challenges encountered,with a trained neural network(NN)assuming the role of a surrogate model that captures the system’s dynamics and subsequently enables QOC to be performed on the NN instead of on the real system.The trained NN surrogate proves effective for practical QOC tasks and is further demonstrated to be adaptable to different experimental conditions,remaining robust across varying system sizes and pulse durations. 展开更多
关键词 neural network quantum optimal control surrogate model trained neural network nn assuming quantum optimal control qoc relies collective spin system optimal control captures system s dynamics
原文传递
Singular optimal control of ascent stage for a surface-to-air missile
15
作者 Wengui LEI Wanchun CHEN +1 位作者 Liang YANG Xiaopeng GONG 《Chinese Journal of Aeronautics》 2025年第8期527-541,共15页
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty... This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness. 展开更多
关键词 Singular optimal control Optimal control problem Goddard problem Singular surface Pseudospectral method Surface-to-air missiles
原文传递
Robust-optimal control of electromagnetic levitation system with matched and unmatched uncertainties:experimental validation
16
作者 Amit Pandey Dipak M.Adhyaru 《Control Theory and Technology》 2025年第1期28-48,共21页
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u... The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme. 展开更多
关键词 Nonlinear system Robust control Optimal control HJB equation Lyapunov stability Electromagnetic levitation system
原文传递
SEIR Mathematical Model for Influenza-Corona Co-Infection with Treatment and Hospitalization Compartments and Optimal Control Strategies
17
作者 Muhammad Imran Brett McKinney Azhar Iqbal Kashif Butt 《Computer Modeling in Engineering & Sciences》 2025年第2期1899-1931,共33页
The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel ma... The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms.This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR(Susceptible-Exposed-Infectious-Recovered)framework to incorporate treatment and hospitalization compartments.The population is divided into eight compartments,with infectious individuals further categorized into influenza infectious,corona infectious,and co-infection cases.The proposed mathematical model is constrained to adhere to fundamental epidemiological properties,such as non-negativity and boundedness within a feasible region.Additionally,the model is demonstrated to be well-posed with a unique solution.Equilibrium points,including the disease-free and endemic equilibria,are identified,and various properties related to these equilibrium points,such as the basic reproduction number,are determined.Local and global sensitivity analyses are performed to identify the parameters that highly influence disease dynamics and the reproduction number.Knowing the most influential parameters is crucial for understanding their impact on the co-infection’s spread and severity.Furthermore,an optimal control problem is defined to minimize disease transmission and to control strategy costs.The purpose of our study is to identify the most effective(optimal)control strategies for mitigating the spread of the co-infection with minimum cost of the controls.The results illustrate the effectiveness of the implemented control strategies in managing the co-infection’s impact on the population’s health.This mathematical modeling and control strategy framework provides valuable tools for understanding and combating the dual threat of corona and influenza co-infection,helping public health authorities and policymakers make informed decisions in the face of these intertwined epidemics. 展开更多
关键词 Influenza-corona co-infection stability analysis sensitivity analysis TREATMENT self-precaution optimal control
在线阅读 下载PDF
Adaptive optimal control system design for semi-active suspension system by supposing variable parameters under exogenous road disturbance
18
作者 Viet Nguyen Hoang Feiqi Deng Chi Nguyen Van 《Control Theory and Technology》 2025年第1期64-73,共10页
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de... This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article. 展开更多
关键词 Quarter car suspension system Semi-active suspension Adaptive control Optimal control Linear-quadratic regulator Exogenous disturbance
原文传递
Investigating the Role of Antimalarial Treatment and Mosquito Nets in Malaria Transmission and Control through Mathematical Modeling
19
作者 Azhar Iqbal Kashif Butt Tariq Ismaeel +4 位作者 Sara Khan Muhammad Imran Waheed Ahmad Ismail Abdulrashid Muhammad Sajid Riaz 《Computer Modeling in Engineering & Sciences》 2025年第9期3463-3492,共30页
Malaria is a significant global health challenge.This devastating disease continues to affect millions,especially in tropical regions.It is caused by Plasmodium parasites transmitted by female Anopheles mosquitoes.Thi... Malaria is a significant global health challenge.This devastating disease continues to affect millions,especially in tropical regions.It is caused by Plasmodium parasites transmitted by female Anopheles mosquitoes.This study introduces a nonlinear mathematical model for examining the transmission dynamics of malaria,incorporating both human and mosquito populations.We aim to identify the key factors driving the endemic spread of malaria,determine feasible solutions,and provide insights that lead to the development of effective prevention and management strategies.We derive the basic reproductive number employing the next-generation matrix approach and identify the disease-free and endemic equilibrium points.Stability analyses indicate that the disease-free equilibrium is locally and globally stable when the reproductive number is below one,whereas an endemic equilibrium persists when this threshold is exceeded.Sensitivity analysis identifies the most influential mosquito-related parameters,particularly the bite rate and mosquito mortality,in controlling the spread of malaria.Furthermore,we extend our model to include a treatment compartment and three disease-preventive control variables such as antimalaria drug treatments,use of larvicides,and the use of insecticide-treated mosquito nets for optimal control analysis.The results show that optimal use of mosquito nets,use of larvicides for mosquito population control,and treatment can lower the basic reproduction number and control malaria transmission with minimal intervention costs.The analysis of disease control strategies and findings offers valuable information for policymakers in designing cost-effective strategies to combat malaria. 展开更多
关键词 MALARIA mathematical modeling optimal control mosquito nets anti-malaria drugs stability and sensitivity analysis
在线阅读 下载PDF
Decentralised adaptive learning-based control of robot manipulators with unknown parameters
20
作者 Emil Mühlbradt Sveen Jing Zhou +1 位作者 Morten Kjeld Ebbesen Mohammad Poursina 《Journal of Automation and Intelligence》 2025年第2期136-144,共9页
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se... This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays. 展开更多
关键词 Adaptive dynamic programming Optimal control Robot manipulator 4-DoF Unknown dynamics
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部