The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe op...The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.展开更多
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy...To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.展开更多
Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task tr...Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical mode...Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.展开更多
To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio...To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.展开更多
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c...In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.展开更多
With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly r...With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly reducing the energy consumption during the operation of EMUs(Electric Multiple Units).This study aims to explore the application of composite materials in the lightweight design of EMU front skirts and proposes a design method based on threedimensional Hashin failure criteria and the Cheetah Optimizer(CO)to achieve maximum lightweight efficiency.The UMAT subroutine was developed based on the three-dimensional Hashin failure criteria to calculate failure parameters,which were used as design parameters in the CO.The model calculations and result extraction were implemented in MATLAB,and the Cheetah Optimizer iteratively determined the optimal laminating angle design that minimized the overall failure factor.After 100 iterations,ensuring structural integrity,the optimized design reduced the weight of the skirt panel by 60% compared to the original aluminum alloy structure,achieving significant lightweight benefits.This study provides foundational data for the lightweight design of EMUs.展开更多
An analytical method is proposed with the “stiffness gradient of the response” as a sensitivity metric, and the relationships between the vibration responses and stiffness changes are established. First, a 2-degree-...An analytical method is proposed with the “stiffness gradient of the response” as a sensitivity metric, and the relationships between the vibration responses and stiffness changes are established. First, a 2-degree-of-freedom (DOF) system is used as an example to propose a stiffness gradient-based evaluation method, taking the effective control bandwidth ratio as a metric of effectiveness. The results show that there is an optimal mass ratio in both variable mass and variable stiffness cases. Then, a typical 16-DOF system is used to investigate the frequency domain characteristics of the stiffness gradient values in the complex system. The distributions of stiffness gradient values show multiple peak intervals corresponding to the sensitive regions for vibration control. By assigning random mass parameters, a significant exponential decay relationship between the subsystem’s mass and effective control is identified, emphasizing the importance of the optimal mass ratio. The finite-element simulation results of solid plate models with springs and oscillators further validate the theoretical results. In short, the gradient value of stiffness effectively quantifies the effects of subsystems on vibration control, providing an analytical tool for active control in complex systems. The identified exponential decay relationship offers meaningful guidance for implementation strategies.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the l...Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.展开更多
This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing...This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing the index system from the perspectives of functionality,economy,social impact,environmental impact,and sustainability.The paper also discusses the application of the optimized index system in practical evaluation and the measures to ensure its effectiveness.The research aims to enhance the evaluation mechanism for the value of transportation infrastructure assets,providing a more scientific basis for decision-making,addressing challenges in asset management,improving the level of asset management in transportation infrastructure,and meeting the demands of high-quality development in the transportation sector in the new era.展开更多
Accurate quantification of carbon and water fluxes dynamics in arid and semi-arid ecosystems is a critical scientific challenge for regional carbon neutrality assessments and sustainable water resource management.In t...Accurate quantification of carbon and water fluxes dynamics in arid and semi-arid ecosystems is a critical scientific challenge for regional carbon neutrality assessments and sustainable water resource management.In this study,we developed a multi-flux global sensitivity discriminant index(D_(sen))by integrating the Biome-BGCMuSo model with eddy covariance flux observations.This index was combined with a Bayesian optimization algorithm to conduct parameter optimization.The results demonstrated that:(1)Sensitivity analysis identified 13 highly sensitive parameters affecting carbon and water fluxes.Among these,the canopy light extinction coefficient(k)and the fraction of leaf N in Rubisco(FLNR)exhibited significantly higher sensitivity to carbon fluxes(GPP,NEE,Reco;D_(sen)>10%)compared to water flux(ET).This highlights the strong dependence of carbon cycle simulations on vegetation physiological parameters.(2)The Bayesian optimization framework efficiently converged 30 parameter spaces within 50 iterations,markedly improving carbon fluxes simulation accuracy.The Kling-Gupta efficiency(KGE)values for Gross Primary Production(GPP),Net Ecosystem Exchange(NEE),and Total Respiration(Reco)increased by 44.94%,69.23%and 123%,respectively.The optimization prioritized highly sensitive parameters,underscoring the necessity of parameter sensitivity stratification.(3)The optimized model effectively reproduced carbon sink characteristics in mountain meadows during the growing season(cumulative NEE=-375 g C/m^(2)).It revealed synergistic carbon-water fluxes interactions governed by coupled photosynthesis-stomatal pathways and identified substrate supply limitations on heterotrophic respiration.This study proposes a novel multi-flux sensitivity index and an efficient optimization framework,elucidating the coupling mechanisms between vegetation physiological regulation(k,FLNR)and environmental stressors(VPD,SWD)in carbonwater cycles.The methodology offers a practical approach for arid ecosystem model optimization and provides theoretical insights for grassland management through canopy structure regulation and water-use efficiency enhancement.展开更多
This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a s...This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.展开更多
The resource-intensive,high-fidelity infrared signature simulations and Radar CrossSection(RCS)calculations limit the integrated optimization of Unmanned Combat Aerial Vehicles(UCAVs)in response to escalating threats ...The resource-intensive,high-fidelity infrared signature simulations and Radar CrossSection(RCS)calculations limit the integrated optimization of Unmanned Combat Aerial Vehicles(UCAVs)in response to escalating threats from joint detection systems.To this end,we present a sample-efficient framework to advance the optimization efficiency of UCAV's exhaust system,focusing on both the stealth characteristics evaluation and the optimization process.A novel multi-fidelity stealth assessment method,powered by multi-fidelity neural network and local perceptive fields,has been developed to fuse different fidelity information from infrared radiation signature and RCS values,respectively.Results demonstrate that the method can achieve relatively high accuracy based on a small set of high-fidelity data.Furthermore,this data fusion method is integrated into a multi-objective Bayesian optimization framework.Employing a Gaussian process regression model and the EHVI acquisition function,the framework effectively explores the stealth objective space,achieving a 15.21%hypervolume indicator increase with fewer optimization iterations compared to NSGA-Ⅱ.Results show that the optimized nozzle significantly reduces both the infrared signature and RCS compared to the baseline configuration.The proposed framework offers a practical and efficient approach for optimizing the integrated stealth performance of UCAVs.展开更多
基金the financial support from the National Natural Science Foundation of China(No.21904007)the Fundamental Research Funds for the Central Universities(China,No.2412022QD008)+1 种基金the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China)the Analysis and Testing Center of Northeast Normal University(China)。
文摘The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金Supported by State Grid Zhejiang Electric Power Co.,Ltd.Science and Technology Project Funding(No.B311DS230005).
文摘To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress the grid-injected power deviation of wind farms,an online optimization strategy for Battery-hydrogen hybrid energy storage systems based on measurement feedback is proposed.First,considering the high charge/discharge losses of hydrogen storage and the low energy density of battery storage,an operational optimization objective is established to enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system.Next,an online optimization model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations with satisfying the operational constraints of hydrogen storage and batteries.Finally,utilizing the online measurement of the energy states of hydrogen storage and batteries,an online optimization strategy based on measurement feedback is designed.Case study results show:before and after smoothing the fluctuations in wind power,the time when the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1%and 1.45%of the total time,respectively,the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the allowable range.Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge tasks,effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving its operational efficiency.
基金funded by the Jiangxi Provincial Social Science Planning Project(21GL12)Jiangxi Provincial Higher Education Humanities and Social Sciences Planning Project(GL22232)Jiangxi Province College Students’Innovation and Entrepreneurship Training Program Project(S20241041027).
文摘Stereoscopic agriculture,as an advanced method of agricultural production,poses new challenges for multi-task trajectory planning of unmanned aerial vehicles(UAVs).To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture,a multi-task trajectory planning model and algorithm(IEP-AO)that synthesizes flight safety and flight efficiency is proposed.Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics,the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects,including the path,slope,altitude,corner,energy and obstacle threat,to improve the effectiveness of the trajectory planning model.And combined with the path optimization algorithm,an Aquila optimizer(IEP-AO)based on the interference-enhanced combination model is proposed,which can help UAVs to improve the trajectory search capability in complex operation space and large-scale operation tasks,and jump out of the locally optimal trajectory path region timely,to generate the optimal trajectory planning plan that can adapt to the diversity of the tasks and the flight efficiency.Meanwhile,four simulated flights with different operation scales and different scene constraints were conducted under the constructed real 3Dimension scene,and the experimental results can show that the proposedmulti-task trajectory planning method canmeet themulti-task requirements in stereoscopic agriculture and improve the mission execution efficiency and agricultural production effect of UAV.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for opti-mized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in turn, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been success- fully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.
基金supported by the National Natural Science Foundation of China(No.62071365)the Key Research and Development Program of Shaanxi Province(No.2017ZDCXL-GY-06-02).
文摘To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071094 and 51979065).
文摘In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.
文摘With the development of composite materials,their lightweight and high-strength characteristics have caused more widespread use from aerospace applications to automotive and rail transportation sectors,significantly reducing the energy consumption during the operation of EMUs(Electric Multiple Units).This study aims to explore the application of composite materials in the lightweight design of EMU front skirts and proposes a design method based on threedimensional Hashin failure criteria and the Cheetah Optimizer(CO)to achieve maximum lightweight efficiency.The UMAT subroutine was developed based on the three-dimensional Hashin failure criteria to calculate failure parameters,which were used as design parameters in the CO.The model calculations and result extraction were implemented in MATLAB,and the Cheetah Optimizer iteratively determined the optimal laminating angle design that minimized the overall failure factor.After 100 iterations,ensuring structural integrity,the optimized design reduced the weight of the skirt panel by 60% compared to the original aluminum alloy structure,achieving significant lightweight benefits.This study provides foundational data for the lightweight design of EMUs.
基金Project supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Foundation of Hunan Province of China(No.2023JJ10055)。
文摘An analytical method is proposed with the “stiffness gradient of the response” as a sensitivity metric, and the relationships between the vibration responses and stiffness changes are established. First, a 2-degree-of-freedom (DOF) system is used as an example to propose a stiffness gradient-based evaluation method, taking the effective control bandwidth ratio as a metric of effectiveness. The results show that there is an optimal mass ratio in both variable mass and variable stiffness cases. Then, a typical 16-DOF system is used to investigate the frequency domain characteristics of the stiffness gradient values in the complex system. The distributions of stiffness gradient values show multiple peak intervals corresponding to the sensitive regions for vibration control. By assigning random mass parameters, a significant exponential decay relationship between the subsystem’s mass and effective control is identified, emphasizing the importance of the optimal mass ratio. The finite-element simulation results of solid plate models with springs and oscillators further validate the theoretical results. In short, the gradient value of stiffness effectively quantifies the effects of subsystems on vibration control, providing an analytical tool for active control in complex systems. The identified exponential decay relationship offers meaningful guidance for implementation strategies.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
基金funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-52).
文摘Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.
文摘This paper focuses on the optimization of the evaluation index system for the value of transportation infrastructure assets.It analyzes the shortcomings of the current system and explores the directions for optimizing the index system from the perspectives of functionality,economy,social impact,environmental impact,and sustainability.The paper also discusses the application of the optimized index system in practical evaluation and the measures to ensure its effectiveness.The research aims to enhance the evaluation mechanism for the value of transportation infrastructure assets,providing a more scientific basis for decision-making,addressing challenges in asset management,improving the level of asset management in transportation infrastructure,and meeting the demands of high-quality development in the transportation sector in the new era.
基金jointly funded by the National Natural Science Foundation of China(Grant No.42161024)the Central Financial Forestry and Grassland Science and Technology Extension Demonstration Project(2025)(Grant No.Xin[2025]TG 09)。
文摘Accurate quantification of carbon and water fluxes dynamics in arid and semi-arid ecosystems is a critical scientific challenge for regional carbon neutrality assessments and sustainable water resource management.In this study,we developed a multi-flux global sensitivity discriminant index(D_(sen))by integrating the Biome-BGCMuSo model with eddy covariance flux observations.This index was combined with a Bayesian optimization algorithm to conduct parameter optimization.The results demonstrated that:(1)Sensitivity analysis identified 13 highly sensitive parameters affecting carbon and water fluxes.Among these,the canopy light extinction coefficient(k)and the fraction of leaf N in Rubisco(FLNR)exhibited significantly higher sensitivity to carbon fluxes(GPP,NEE,Reco;D_(sen)>10%)compared to water flux(ET).This highlights the strong dependence of carbon cycle simulations on vegetation physiological parameters.(2)The Bayesian optimization framework efficiently converged 30 parameter spaces within 50 iterations,markedly improving carbon fluxes simulation accuracy.The Kling-Gupta efficiency(KGE)values for Gross Primary Production(GPP),Net Ecosystem Exchange(NEE),and Total Respiration(Reco)increased by 44.94%,69.23%and 123%,respectively.The optimization prioritized highly sensitive parameters,underscoring the necessity of parameter sensitivity stratification.(3)The optimized model effectively reproduced carbon sink characteristics in mountain meadows during the growing season(cumulative NEE=-375 g C/m^(2)).It revealed synergistic carbon-water fluxes interactions governed by coupled photosynthesis-stomatal pathways and identified substrate supply limitations on heterotrophic respiration.This study proposes a novel multi-flux sensitivity index and an efficient optimization framework,elucidating the coupling mechanisms between vegetation physiological regulation(k,FLNR)and environmental stressors(VPD,SWD)in carbonwater cycles.The methodology offers a practical approach for arid ecosystem model optimization and provides theoretical insights for grassland management through canopy structure regulation and water-use efficiency enhancement.
基金supported by the Ramanujan Fellowship from the Science and Engineering Research Board,Government of India(Grant No.RJF/2022/000115).
文摘This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.
基金supported by the National Natural Science Foundation of China(No.12102356)。
文摘The resource-intensive,high-fidelity infrared signature simulations and Radar CrossSection(RCS)calculations limit the integrated optimization of Unmanned Combat Aerial Vehicles(UCAVs)in response to escalating threats from joint detection systems.To this end,we present a sample-efficient framework to advance the optimization efficiency of UCAV's exhaust system,focusing on both the stealth characteristics evaluation and the optimization process.A novel multi-fidelity stealth assessment method,powered by multi-fidelity neural network and local perceptive fields,has been developed to fuse different fidelity information from infrared radiation signature and RCS values,respectively.Results demonstrate that the method can achieve relatively high accuracy based on a small set of high-fidelity data.Furthermore,this data fusion method is integrated into a multi-objective Bayesian optimization framework.Employing a Gaussian process regression model and the EHVI acquisition function,the framework effectively explores the stealth objective space,achieving a 15.21%hypervolume indicator increase with fewer optimization iterations compared to NSGA-Ⅱ.Results show that the optimized nozzle significantly reduces both the infrared signature and RCS compared to the baseline configuration.The proposed framework offers a practical and efficient approach for optimizing the integrated stealth performance of UCAVs.