The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the l...Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.展开更多
The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe op...The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.展开更多
This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a s...This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.展开更多
With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown ma...With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.展开更多
Fingerprint classification is a biometric method for crime prevention.For the successful completion of various tasks,such as official attendance,banking transactions,andmembership requirements,fingerprint classificati...Fingerprint classification is a biometric method for crime prevention.For the successful completion of various tasks,such as official attendance,banking transactions,andmembership requirements,fingerprint classification methods require improvement in terms of accuracy,speed,and the interpretability of non-linear demographic features.Researchers have introduced several CNN-based fingerprint classification models with improved accuracy,but these models often lack effective feature extractionmechanisms and complex multineural architectures.In addition,existing literature primarily focuses on gender classification rather than accurately,efficiently,and confidently classifying hands and fingers through the interpretability of prominent features.This research seeks to improve a compact,robust,explainable,and non-linear feature extraction-based CNN model for robust fingerprint pattern analysis and accurate yet efficient fingerprint classification.The proposed model(a)recognizes gender,hands,and fingers correctly through an advanced channel-wise attention-based feature extraction procedure,(b)accelerates the fingerprints identification process by applying an innovative fractional optimizer within a simple,but effective classification architecture,and(c)interprets prominent features through an explainable artificial intelligence technique.The encapsulated dependencies among distinct complex features are captured through a non-linear activation operation within a customized CNN model.The proposed fractionally optimized convolutional neural network(FOCNN)model demonstrates improved performance compared to some existing models,achieving high accuracies of 97.85%,99.10%,and 99.29%for finger,gender,and hand classification,respectively,utilizing the benchmark Sokoto Coventry Fingerprint Dataset.展开更多
Cyber-physical systems(CPS)represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing,healthcare,and autonomous infrastructure.However,t...Cyber-physical systems(CPS)represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing,healthcare,and autonomous infrastructure.However,their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats,potentially leading to operational failures and data breaches.Furthermore,CPS faces significant threats related to unauthorized access,improper management,and tampering of the content it generates.In this paper,we propose an intrusion detection system(IDS)optimized for CPS environments using a hybrid approach by combining a natureinspired feature selection scheme,such as Grey Wolf Optimization(GWO),in connection with the emerging Light Gradient Boosting Machine(LightGBM)classifier,named as GWO-LightGBM.While gradient boosting methods have been explored in prior IDS research,our novelty lies in proposing a hybrid approach targeting CPS-specific operational constraints,such as low-latency response and accurate detection of rare and critical attack types.We evaluate GWO-LightGBM against GWO-XGBoost,GWO-CatBoost,and an artificial neural network(ANN)baseline using the NSL-KDD and CIC-IDS-2017 benchmark datasets.The proposed models are assessed across multiple metrics,including accuracy,precision,recall,and F1-score,with an emphasis on class-wise performance and training efficiency.The proposed GWO-LightGBM model achieves the highest overall accuracy(99.73%)for NSL-KDD and(99.61%)for CIC-IDS-2017,demonstrating superior performance in detecting minority classes such as Remote-to-Local(R2L)and Other attacks—commonly overlooked by other classifiers.Moreover,the proposed model consumes lower training time,highlighting its practical feasibility and scalability for real-time CPS deployment.展开更多
Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cybe...Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.展开更多
Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional val...Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional valve designs often struggle to maintain effective regulation across a wide range of systempressures. To address this limitation, this study introduces a novel Pilot hydraulic valves specificallyengineered for enhanced dynamic performance and precise regulation under variable pressure conditions.Building upon prior experimental findings, the proposed design integrates a high-fidelity simulationframework and a surrogate model-based optimization strategy. The study begins by formulating acomprehensive mathematical model of the pipeline system using electro-hydraulic simulation techniques,capturing the dynamic behavior of both the pilot valve and the broader urban water distribution network. Acoupled simulation platform is then developed, leveraging both one-dimensional (1D) and three-dimensional(3D) software tools to accurately analyze the valve’s transient response and operational characteristics. Toachieve optimal valve performance, a multi-objective optimization approach is proposed. This approachemploys a Levy-based Improved Tuna-InspiredWake-Up Optimization Algorithm (L-TIWOA) to refine aBackpropagation (BP) neural network, thereby constructing a highly accurate surrogate model. Compared tothe conventional BP neural network, the improved model demonstrates significantly reduced mean absoluteerror (MAE) and mean squared error (MSE), underscoring its superior predictive capability. The surrogatemodel serves as the objective function within an Improved Multi-Objective Mother Lode OptimizationAlgorithm (IMOMLOA), which is then used to fine-tune the key design parameters of the control valve.Validation through experimental testing reveals that the optimized valve achieves a maximum flow deviationof just 1.11 t/h, corresponding to a control accuracy of 3.7%, at a target flow rate of 30 t/h. Moreover,substantial improvements in dynamic response are observed, confirming the effectiveness of the proposeddesign and optimization strategy.展开更多
As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance le...As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
In recent years,developed Intrusion Detection Systems(IDSs)perform a vital function in improving security and anomaly detection.The effectiveness of deep learning-based methods has been proven in extracting better fea...In recent years,developed Intrusion Detection Systems(IDSs)perform a vital function in improving security and anomaly detection.The effectiveness of deep learning-based methods has been proven in extracting better features and more accurate classification than other methods.In this paper,a feature extraction with convolutional neural network on Internet of Things(IoT)called FECNNIoT is designed and implemented to better detect anomalies on the IoT.Also,a binary multi-objective enhance of the Gorilla troops optimizer called BMEGTO is developed for effective feature selection.Finally,the combination of FECNNIoT and BMEGTO and KNN algorithm-based classification technique has led to the presentation of a hybrid method called CNN-BMEGTO-KNN.In the next step,the proposed model is implemented on two benchmark data sets,NSL-KDD and TON-IoT and tested regarding the accuracy,precision,recall,and Fl-score criteria.The proposed CNN-BMEGTO-KNN model has reached 99.99%and 99.86%accuracy on TON-IoT and NSL-KDD datasets,respectively.In addition,the proposed BMEGTO method can identify about 27%and 25%of the effective features of the NSL-KDD and TON-IoT datasets,respectively.展开更多
This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balanc...This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-52).
文摘Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.
基金the financial support from the National Natural Science Foundation of China(No.21904007)the Fundamental Research Funds for the Central Universities(China,No.2412022QD008)+1 种基金the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China)the Analysis and Testing Center of Northeast Normal University(China)。
文摘The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.
基金supported by the Ramanujan Fellowship from the Science and Engineering Research Board,Government of India(Grant No.RJF/2022/000115).
文摘This paper introduces dynamic mode decomposition(DMD)as a novel approach to model the breakage kinetics of particulate systems.DMD provides a data-driven framework to identify a best-fit linear dynamics model from a sequence of system measurement snapshots,bypassing the nontrivial task of determining appropriate mathemat-ical forms for the breakage kernel functions.A key innovation of our method is the instilling of physics-informed constraints into the DMD eigenmodes and eigenvalues,ensuring they adhere to the physical structure of particle breakage processes even under sparse measurement data.The integration of eigen-constraints is computationally aided by a zeroth-order global optimizer for solving the nonlinear,nonconvex optimization problem that elicits system dynamics from data.Our method is evaluated against the state-of-the-art optimized DMD algorithm using both generated data and real-world data of a batch grinding mill,showcasing over an order of magnitude lower prediction errors in data reconstruction and forecasting.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB4500800)the National Science Foundation of China(No.42071431).
文摘With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.
文摘Fingerprint classification is a biometric method for crime prevention.For the successful completion of various tasks,such as official attendance,banking transactions,andmembership requirements,fingerprint classification methods require improvement in terms of accuracy,speed,and the interpretability of non-linear demographic features.Researchers have introduced several CNN-based fingerprint classification models with improved accuracy,but these models often lack effective feature extractionmechanisms and complex multineural architectures.In addition,existing literature primarily focuses on gender classification rather than accurately,efficiently,and confidently classifying hands and fingers through the interpretability of prominent features.This research seeks to improve a compact,robust,explainable,and non-linear feature extraction-based CNN model for robust fingerprint pattern analysis and accurate yet efficient fingerprint classification.The proposed model(a)recognizes gender,hands,and fingers correctly through an advanced channel-wise attention-based feature extraction procedure,(b)accelerates the fingerprints identification process by applying an innovative fractional optimizer within a simple,but effective classification architecture,and(c)interprets prominent features through an explainable artificial intelligence technique.The encapsulated dependencies among distinct complex features are captured through a non-linear activation operation within a customized CNN model.The proposed fractionally optimized convolutional neural network(FOCNN)model demonstrates improved performance compared to some existing models,achieving high accuracies of 97.85%,99.10%,and 99.29%for finger,gender,and hand classification,respectively,utilizing the benchmark Sokoto Coventry Fingerprint Dataset.
基金supported by Culture,Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture,Sports and Tourism in 2024(Project Name:Global Talent Training Program for Copyright Management Technology in Game Contents,Project Number:RS-2024-00396709,Contribution Rate:100%).
文摘Cyber-physical systems(CPS)represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing,healthcare,and autonomous infrastructure.However,their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats,potentially leading to operational failures and data breaches.Furthermore,CPS faces significant threats related to unauthorized access,improper management,and tampering of the content it generates.In this paper,we propose an intrusion detection system(IDS)optimized for CPS environments using a hybrid approach by combining a natureinspired feature selection scheme,such as Grey Wolf Optimization(GWO),in connection with the emerging Light Gradient Boosting Machine(LightGBM)classifier,named as GWO-LightGBM.While gradient boosting methods have been explored in prior IDS research,our novelty lies in proposing a hybrid approach targeting CPS-specific operational constraints,such as low-latency response and accurate detection of rare and critical attack types.We evaluate GWO-LightGBM against GWO-XGBoost,GWO-CatBoost,and an artificial neural network(ANN)baseline using the NSL-KDD and CIC-IDS-2017 benchmark datasets.The proposed models are assessed across multiple metrics,including accuracy,precision,recall,and F1-score,with an emphasis on class-wise performance and training efficiency.The proposed GWO-LightGBM model achieves the highest overall accuracy(99.73%)for NSL-KDD and(99.61%)for CIC-IDS-2017,demonstrating superior performance in detecting minority classes such as Remote-to-Local(R2L)and Other attacks—commonly overlooked by other classifiers.Moreover,the proposed model consumes lower training time,highlighting its practical feasibility and scalability for real-time CPS deployment.
基金financially supported by the Ongoing Research Funding Program(ORF-2025-846),King Saud University,Riyadh,Saudi Arabia.
文摘Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things(SCADA-IIoT)systems against intruders has become essential since industrial control systems now oversee critical infrastructure,and cyber attackers more frequently target these systems.Due to their connection of physical assets with digital networks,SCADA-IIoT systems face substantial risks from multiple attack types,including Distributed Denial of Service(DDoS),spoofing,and more advanced intrusion methods.Previous research in this field faces challenges due to insufficient solutions,as current intrusion detection systems lack the necessary accuracy,scalability,and adaptability needed for IIoT environments.This paper introduces CyberFortis,a novel cybersecurity framework aimed at detecting and preventing cyber threats in SCADA-IIoT systems.CyberFortis presents two key innovations:Firstly,Siamese Double Deep Q-Network with Autoencoders(Siamdqn-AE)FusionNet,which enhances intrusion detection by combining deep Q-Networks with autoencoders for improved attack detection and feature extraction;and secondly,the PopHydra Optimiser,an innovative solution to compute reinforcement learning discount factors for better model performance and convergence.This method combines Siamese deep Q-Networks with autoencoders to create a system that can detect different types of attacks more effectively and adapt to new challenges.CyberFortis is better than current top attack detection systems,showing higher scores in important areas like accuracy,precision,recall,and F1-score,based on data from CICIoT 2023,UNSW-NB 15,and WUSTL-IIoT datasets.Results from the proposed framework show a 97.5%accuracy rate,indicating its potential as an effective solution for SCADA-IIoT cybersecurity against emerging threats.The research confirms that the proposed security and resilience methods are successful in protecting vital industrial control systems within their operational environments.
基金Gansu Provincial Department of Education(Industrial Support Plan Project:202CYZC-048).
文摘Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional valve designs often struggle to maintain effective regulation across a wide range of systempressures. To address this limitation, this study introduces a novel Pilot hydraulic valves specificallyengineered for enhanced dynamic performance and precise regulation under variable pressure conditions.Building upon prior experimental findings, the proposed design integrates a high-fidelity simulationframework and a surrogate model-based optimization strategy. The study begins by formulating acomprehensive mathematical model of the pipeline system using electro-hydraulic simulation techniques,capturing the dynamic behavior of both the pilot valve and the broader urban water distribution network. Acoupled simulation platform is then developed, leveraging both one-dimensional (1D) and three-dimensional(3D) software tools to accurately analyze the valve’s transient response and operational characteristics. Toachieve optimal valve performance, a multi-objective optimization approach is proposed. This approachemploys a Levy-based Improved Tuna-InspiredWake-Up Optimization Algorithm (L-TIWOA) to refine aBackpropagation (BP) neural network, thereby constructing a highly accurate surrogate model. Compared tothe conventional BP neural network, the improved model demonstrates significantly reduced mean absoluteerror (MAE) and mean squared error (MSE), underscoring its superior predictive capability. The surrogatemodel serves as the objective function within an Improved Multi-Objective Mother Lode OptimizationAlgorithm (IMOMLOA), which is then used to fine-tune the key design parameters of the control valve.Validation through experimental testing reveals that the optimized valve achieves a maximum flow deviationof just 1.11 t/h, corresponding to a control accuracy of 3.7%, at a target flow rate of 30 t/h. Moreover,substantial improvements in dynamic response are observed, confirming the effectiveness of the proposeddesign and optimization strategy.
基金the National Natural Science Foundation of China(Grant 42177164)the Distinguished Youth Science Foundation of Hunan Province of China(2022JJ10073).
文摘As massive underground projects have become popular in dense urban cities,a problem has arisen:which model predicts the best for Tunnel Boring Machine(TBM)performance in these tunneling projects?However,performance level of TBMs in complex geological conditions is still a great challenge for practitioners and researchers.On the other hand,a reliable and accurate prediction of TBM performance is essential to planning an applicable tunnel construction schedule.The performance of TBM is very difficult to estimate due to various geotechnical and geological factors and machine specifications.The previously-proposed intelligent techniques in this field are mostly based on a single or base model with a low level of accuracy.Hence,this study aims to introduce a hybrid randomforest(RF)technique optimized by global harmony search with generalized oppositionbased learning(GOGHS)for forecasting TBM advance rate(AR).Optimizing the RF hyper-parameters in terms of,e.g.,tree number and maximum tree depth is the main objective of using the GOGHS-RF model.In the modelling of this study,a comprehensive databasewith themost influential parameters onTBMtogetherwithTBM AR were used as input and output variables,respectively.To examine the capability and power of the GOGHSRF model,three more hybrid models of particle swarm optimization-RF,genetic algorithm-RF and artificial bee colony-RF were also constructed to forecast TBM AR.Evaluation of the developed models was performed by calculating several performance indices,including determination coefficient(R2),root-mean-square-error(RMSE),and mean-absolute-percentage-error(MAPE).The results showed that theGOGHS-RF is a more accurate technique for estimatingTBMAR compared to the other applied models.The newly-developedGOGHS-RFmodel enjoyed R2=0.9937 and 0.9844,respectively,for train and test stages,which are higher than a pre-developed RF.Also,the importance of the input parameters was interpreted through the SHapley Additive exPlanations(SHAP)method,and it was found that thrust force per cutter is the most important variable on TBMAR.The GOGHS-RF model can be used in mechanized tunnel projects for predicting and checking performance.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘In recent years,developed Intrusion Detection Systems(IDSs)perform a vital function in improving security and anomaly detection.The effectiveness of deep learning-based methods has been proven in extracting better features and more accurate classification than other methods.In this paper,a feature extraction with convolutional neural network on Internet of Things(IoT)called FECNNIoT is designed and implemented to better detect anomalies on the IoT.Also,a binary multi-objective enhance of the Gorilla troops optimizer called BMEGTO is developed for effective feature selection.Finally,the combination of FECNNIoT and BMEGTO and KNN algorithm-based classification technique has led to the presentation of a hybrid method called CNN-BMEGTO-KNN.In the next step,the proposed model is implemented on two benchmark data sets,NSL-KDD and TON-IoT and tested regarding the accuracy,precision,recall,and Fl-score criteria.The proposed CNN-BMEGTO-KNN model has reached 99.99%and 99.86%accuracy on TON-IoT and NSL-KDD datasets,respectively.In addition,the proposed BMEGTO method can identify about 27%and 25%of the effective features of the NSL-KDD and TON-IoT datasets,respectively.
基金supported by the National Natural Science Foundation of China(Project No.5217232152102391)+2 种基金Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘This paper introduces the Surrogate-assisted Multi-objective Grey Wolf Optimizer(SMOGWO)as a novel methodology for addressing the complex problem of empty-heavy train allocation,with a focus on line utilization balance.By integrating surrogate models to approximate the objective functions,SMOGWO significantly improves the efficiency and accuracy of the optimization process.The effectiveness of this approach is evaluated using the CEC2009 multi-objective test function suite,where SMOGWO achieves a superiority rate of 76.67%compared to other leading multi-objective algorithms.Furthermore,the practical applicability of SMOGWO is demonstrated through a case study on empty and heavy train allocation,which validates its ability to balance line capacity,minimize transportation costs,and optimize the technical combination of heavy trains.The research highlights SMOGWO's potential as a robust solution for optimization challenges in railway transportation,offering valuable contributions toward enhancing operational efficiency and promoting sustainable development in the sector.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.