This paper presents a new non-linear formulation of the classical Vortex Lattice Method(VLM)approach for calculating the aerodynamic properties of lifting surfaces.The method accounts for the effects of viscosity,and ...This paper presents a new non-linear formulation of the classical Vortex Lattice Method(VLM)approach for calculating the aerodynamic properties of lifting surfaces.The method accounts for the effects of viscosity,and due to its low computational cost,it represents a very good tool to perform rapid and accurate wing design and optimization procedures.The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections,according to strip theory,and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface,calculated with a fully three-dimensional vortex lifting law.The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment,as well as in predicting the wing drag.The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.展开更多
Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Con...Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application.展开更多
Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)alg...Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.展开更多
Muli-objective and multi disciplinary optimization mathodologies have progressed enormously in solving complex engineeing design problems.Turbomachines are essential energy conversion elements widely adopted in indust...Muli-objective and multi disciplinary optimization mathodologies have progressed enormously in solving complex engineeing design problems.Turbomachines are essential energy conversion elements widely adopted in industrial aplications,such as Muli objective and multi disciplinary optimization mathodologies have progressed enormously in solving complex engineeing design problems.展开更多
The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of comp...The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of components in series-parallel systems with multiple constraints is presented in this paper. The McCullochPittes neural network model is used in this approach. The design methods of the neural network construction and its energy function are described in detail. The optimal solutions of the reliability problem are obtained by minimizing the energy function of the neural networks. Simulation results show the reliability optimization approach using neural networks can find the optimal or near-optimal solutions for most of the problems in a relatively short time, it is a useful alternative for system reliability design of complex systems.展开更多
In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is...In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.展开更多
Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). ...Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.展开更多
Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reac...Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reaching high accurate prediction of both regular and irregular programs on various hardware configurations are still not trivial.This work proposes a novel model called process-RAM-feedback(PRF)to quantify the overhead of computation and data transmission time on general-purpose multi-core processors.The PRF model predicts the cost of instruction for singlecore by a directed acyclic graph(DAG)and the transmission time of memory access between each memory hierarchy through a newly designed cache simulator.By using performance modeling and feedback optimization method,this paper uses PRF model to analyze and optimize convolution,sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular kernel to irregular and data dependence.Through the PRF model,it obtains optimization guidance with various sparsity structures,algorithm designs,and instruction sets support on different data sizes.展开更多
Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the pop...Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.展开更多
Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response...Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling and optimization of the effect of four operating variables on the removal of phosphate from aqueous solution using zeolite Na-A. The parameters were contact time (0.5 - 6 h), phosphate anion concentrations (10 - 30 mg/L), adsorbent dosage (0.05 - 0.1 g), and solution pH (2 - 7). A total of 26 tests were conducted using the synthetic zeolite Na-A according to the conditions predicted by the statistical design. In order to optimize removal of phosphate by synthetic zeolite Na-A, mathematical equations of quadratic polynomial model were derived from Design Expert Software (Version 6.0.5). Such equations are second-order response functions which represent the amount of phosphate adsorbed (mg/g) and the removal efficiency (%) and are expressed as functions of the selected operating parameters. Predicted values were found to be in good agreement and correlation with experimental results (R2 values of 0.918 and 0.905 for amount of phosphate adsorbed and removal efficiency of it, respectively). To understand the effect of the four variables for optimal removal of phosphate using zeolite Na-A, the models were presented as cube and 3-D response surface graphs. RSM and CCRD could efficiently be applied for the modeling of removing of phosphate from aqueous solution using zeolite Na-A and it is efficient way for obtaining information in a short time and with the fewer number of experiments.展开更多
This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory syste...This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization pro...In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization problem (COP), a class of nonmonotone trust region algorithmsis proposed in sec. 1. In sec. 2, the global convergence of this class of algorithms isproved. In sec. 3, some results about the Cauchy point are provided. The展开更多
An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality ...An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality constraints.The favorable properties of both the Lowner operator and the corresponding augmented Lagrangian are discussed.And under some mild assumptions,the rate of convergence of the augmented Lagrange algorithm is studied in detail.展开更多
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex...Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.展开更多
Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major coh...Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major cohort for stem cell-based therapies.However,the regenerative potential of stem cells significantly decreases with advanced age and deteriorating health status of the donor.Therefore,the efficacy of autologous stem cell therapy is significantly compromised in older patients.To overcome these limitations,alternative strategies have been used to restore the age-and disease-depleted function of stem cells.These methods aim to restore the therapeutic efficacy of aged stem cells for autologous use.This article explores the effect of donor age and health status on the regenerative potential of stem cells.It further highlights the limitations of stem cell-based therapy for autologous treatment in the elderly.A comprehensive insight into the potential strategies to address the“age”and“disease”compromised regenerative potential of autologous stem cells is also presented.The information provided here serves as a valuable resource for physicians and patients for optimization of stem cellbased autologous therapy for aged patients.展开更多
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ...Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.展开更多
The constructal optimizations of T-shaped fin with two-dimensional heat transfer model are carried out by finite element method and taking the minimization of equivalent thermal resistance based on entransy dissipatio...The constructal optimizations of T-shaped fin with two-dimensional heat transfer model are carried out by finite element method and taking the minimization of equivalent thermal resistance based on entransy dissipation and the minimization of maximum thermal resistance as optimization objectives, respectively. The effects of the global parameter a (integrating the coefficient of convective heat transfer, the overall area occupied by fin and its thermal conductivity) and the volume fraction ? of fin on the minimums of equivalent thermal resistance and maximum thermal resistance as well as their corresponding optimal configurations are analyzed. The comparison of the results based on the above two optimization objectives is conducted. The results show that the optimal structures based on the two optimization objectives are obviously different from each other. Compared with the optimization result by taking the minimization of maximum thermal resistance as the objective, the optimization result by taking the equivalent thermal resistance minimization as the objective can reduce the average temperature difference in the fin obviously. The increases of a and ? can all improve the working status of local hot spot and the global heat transfer performance of the system. But the improvement effects of the increases of a and ? on the minimization of equivalent thermal resistance are different from those on the minimization of maximum thermal resistance. For either objective, the effect of a is different from that of ?. The T-shaped fin with minimum equivalent thermal resistance is much taller than that with minimum maximum thermal resistance; for either optimization objective, the stem of fin is thicker than the branches of fin, and the stem thickness is relatively close to branch thickness when the minimization of equivalent thermal resistance is taken as the optimization objective. The T-shaped fin with flat stem and slender branches can benefit the reduction of the maximum thermal resistance.展开更多
Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this p...Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.展开更多
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)for the funding of the Canada Research Chair in Aircraft Modeling and Simulation Technologiesthe Canada Foundation of Innovation(CFI),the Ministerèdu Développementéconomique,de l’Innovation et de l’Exportation(MDEIE)and Hydra Technologies for the acquisition of the UAS-S4 using the Leaders Opportunity Funds+2 种基金the financial support obtained in the framework of the CRIAQ MDO-505 projectthe implication of our industrial partners Bombardier Aerospace and Thales CanadaNSERC for their support
文摘This paper presents a new non-linear formulation of the classical Vortex Lattice Method(VLM)approach for calculating the aerodynamic properties of lifting surfaces.The method accounts for the effects of viscosity,and due to its low computational cost,it represents a very good tool to perform rapid and accurate wing design and optimization procedures.The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections,according to strip theory,and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface,calculated with a fully three-dimensional vortex lifting law.The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment,as well as in predicting the wing drag.The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.
基金financially supported by the National Natural Science Foundation of China(22278380,22108259)China Postdoctoral Science Foundation(2021M692911,2022T150589)
文摘Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application.
文摘Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.
文摘Muli-objective and multi disciplinary optimization mathodologies have progressed enormously in solving complex engineeing design problems.Turbomachines are essential energy conversion elements widely adopted in industrial aplications,such as Muli objective and multi disciplinary optimization mathodologies have progressed enormously in solving complex engineeing design problems.
基金Supported by the National Natural Science Foundation of China (60006002) and Natural Science Research Project of Education Depart-ment of Guangdong Province of China (02019)
文摘The main task of system reliability design is to find the best layout of components to maximize reliability or to minimize cost. A reliability optimization approach using neural networks to identify the choice of components in series-parallel systems with multiple constraints is presented in this paper. The McCullochPittes neural network model is used in this approach. The design methods of the neural network construction and its energy function are described in detail. The optimal solutions of the reliability problem are obtained by minimizing the energy function of the neural networks. Simulation results show the reliability optimization approach using neural networks can find the optimal or near-optimal solutions for most of the problems in a relatively short time, it is a useful alternative for system reliability design of complex systems.
文摘In the paper, a new mixed algorithm combined with schemes of nonmonotone line search, the systems of linear equations for higher order modification and sequential quadratic programming for constrained optimizations is presented. Under some weaker assumptions,without strict complementary condition, the algorithm is globally and superlinearly convergent.
文摘Objective To optimize experimental parameters for the photosensitization of 5-aminolevulinic acid (ALA) in promyelocytic leukemia cell HL60 and compare them with normal human peripheral blood mononuclear cell (PBMC). Methods ALA incubation time, wavelength applied to irradiate, concentration of ALA incubated, irradiation fluence may modulate the effect of 5-aminolevulinic acid based Photodynamic Therapy (ALA-PDT).The high-pressure mercury lamps of 400W served as light source, the interference filter of 410nm, 432nm, 545nm, 577nm were used to select the specific wavelength. Fluorescence microscope was used to detect the fluorescence intensity and location of protoporphyrin IX (PpIX) endogenously produced by ALA. MTT assay was used to measure the survival of cell. Flow cytometry with ANNEXIN V FITC kit (contains annexin V FITC, binding buffer and PI) was used to detect the mode of cell death. Results ① 1mmol/L ALA incubated 1×105/mL HL60 cell line for 4 hours, the maximum fluorescence of ALA induced PpIX was detected in cytomembrane. ② Irradiated with 410nm for 14.4J/cm2 can result in the minimum survivability of HL60 cell. ③ The main mode of HL60 cell death caused by ALA-PDT is necrosis. Conclusion ALA for 1mmol/L, 4 hours for dark incubation time, 410nm for irradiation wavelength, 14.4J/cm2 for irradiation fluence were the optimal parameters to selectively eliminate promyelocytic leukemia cell HL60 by ALA based PDT. The photosensitization of ALA based PDT caused the necrosis of HL60 cell, so it could be used for inactivation of certain leukemia cells.
基金Supported by the National Key Research and Development Program of China(No.2017YFB0202105,2016YFB0201305,2016YFB0200803,2016YFB0200300)the National Natural Science Foundation of China(No.61521092,91430218,31327901,61472395,61432018).
文摘Performance models provide insightful perspectives to predict performance and to propose optimization guidance.Although there has been much researches,pinpointing bottlenecks of various memory access patterns and reaching high accurate prediction of both regular and irregular programs on various hardware configurations are still not trivial.This work proposes a novel model called process-RAM-feedback(PRF)to quantify the overhead of computation and data transmission time on general-purpose multi-core processors.The PRF model predicts the cost of instruction for singlecore by a directed acyclic graph(DAG)and the transmission time of memory access between each memory hierarchy through a newly designed cache simulator.By using performance modeling and feedback optimization method,this paper uses PRF model to analyze and optimize convolution,sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular kernel to irregular and data dependence.Through the PRF model,it obtains optimization guidance with various sparsity structures,algorithm designs,and instruction sets support on different data sizes.
基金Supported by the Natonal Natural Science Foundation of China (No. 70071042 60073043)the National 863 Hi-Tech Project of Chi
文摘Recently Guo Tao proposed a stochastic search algorithm in his PhD thesis for solving function optimization problems. He combined the subspace search method (a general multi-parent recombination strategy) with the population hill-climbing method. The former keeps a global search for overall situation, and the latter keeps the convergence of the algorithm. Guo's algorithm has many advantages, such as the simplicity of its structure, the higher accuracy of its results, the wide range of its applications, and the robustness of its use. In this paper a preliminary theoretical analysis of the algorithm is given and some numerical experiments has been done by using Guo's algorithm for demonstrating the theoretical results. Three asynchronous parallel evolutionary algorithms with different granularities for MIMD machines are designed by parallelizing Guo's Algorithm.
文摘Synthetic zeolite Na-A was prepared from Egyptian kaolinite by hydrothermal treatment to be used as an adsorbent for removal of phosphate from aqueous solutions. The present work deals with the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling and optimization of the effect of four operating variables on the removal of phosphate from aqueous solution using zeolite Na-A. The parameters were contact time (0.5 - 6 h), phosphate anion concentrations (10 - 30 mg/L), adsorbent dosage (0.05 - 0.1 g), and solution pH (2 - 7). A total of 26 tests were conducted using the synthetic zeolite Na-A according to the conditions predicted by the statistical design. In order to optimize removal of phosphate by synthetic zeolite Na-A, mathematical equations of quadratic polynomial model were derived from Design Expert Software (Version 6.0.5). Such equations are second-order response functions which represent the amount of phosphate adsorbed (mg/g) and the removal efficiency (%) and are expressed as functions of the selected operating parameters. Predicted values were found to be in good agreement and correlation with experimental results (R2 values of 0.918 and 0.905 for amount of phosphate adsorbed and removal efficiency of it, respectively). To understand the effect of the four variables for optimal removal of phosphate using zeolite Na-A, the models were presented as cube and 3-D response surface graphs. RSM and CCRD could efficiently be applied for the modeling of removing of phosphate from aqueous solution using zeolite Na-A and it is efficient way for obtaining information in a short time and with the fewer number of experiments.
文摘This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China and Postdoctoral Foundation of China.
文摘In this note, we consider the following constrained optimization problem (COP) min f(x), x∈Ωwhere f(x): R^n→R is a continuously differentiable function on a closed convex set Ω. Forthe constrained optimization problem (COP), a class of nonmonotone trust region algorithmsis proposed in sec. 1. In sec. 2, the global convergence of this class of algorithms isproved. In sec. 3, some results about the Cauchy point are provided. The
基金supported by the Fundamental Research Funds for the Central Universities(No.2018IB016).
文摘An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality constraints.The favorable properties of both the Lowner operator and the corresponding augmented Lagrangian are discussed.And under some mild assumptions,the rate of convergence of the augmented Lagrange algorithm is studied in detail.
基金We would like to show gratitude to the Yunnan Province Basic Research Major Project(202501BC070006(Y.Wang))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY ZNT2024002(Y.Wang))+3 种基金National Natural Science Foundation of China(22279070(L.Wang))and(U21A20170(X.He))the Ministry of Science and Technology of China(2019YFA0705703(L.Wang))Beijing Natural Science Foundation(L242005(X.He))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY BSPY2024011(T.Lai)).
文摘Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.
文摘Regenerative medicine is a promising therapeutic avenue for previously incurable diseases.As the risk of chronic and degenerative diseases significantly increases with age,the elderly population represents a major cohort for stem cell-based therapies.However,the regenerative potential of stem cells significantly decreases with advanced age and deteriorating health status of the donor.Therefore,the efficacy of autologous stem cell therapy is significantly compromised in older patients.To overcome these limitations,alternative strategies have been used to restore the age-and disease-depleted function of stem cells.These methods aim to restore the therapeutic efficacy of aged stem cells for autologous use.This article explores the effect of donor age and health status on the regenerative potential of stem cells.It further highlights the limitations of stem cell-based therapy for autologous treatment in the elderly.A comprehensive insight into the potential strategies to address the“age”and“disease”compromised regenerative potential of autologous stem cells is also presented.The information provided here serves as a valuable resource for physicians and patients for optimization of stem cellbased autologous therapy for aged patients.
基金Supported by Xuhui District Health Commission,No.SHXH202214.
文摘Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies.
基金supported by the National Natural Science Foundation of China (Grant No. 10905093)the Program for New Century Excellent Talents in University of China (Grant No. NCET-04-1006)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)the Natural Science Foundation for Youngsters of Naval University of Engineering (Grant No. HGDQNJJ10017)
文摘The constructal optimizations of T-shaped fin with two-dimensional heat transfer model are carried out by finite element method and taking the minimization of equivalent thermal resistance based on entransy dissipation and the minimization of maximum thermal resistance as optimization objectives, respectively. The effects of the global parameter a (integrating the coefficient of convective heat transfer, the overall area occupied by fin and its thermal conductivity) and the volume fraction ? of fin on the minimums of equivalent thermal resistance and maximum thermal resistance as well as their corresponding optimal configurations are analyzed. The comparison of the results based on the above two optimization objectives is conducted. The results show that the optimal structures based on the two optimization objectives are obviously different from each other. Compared with the optimization result by taking the minimization of maximum thermal resistance as the objective, the optimization result by taking the equivalent thermal resistance minimization as the objective can reduce the average temperature difference in the fin obviously. The increases of a and ? can all improve the working status of local hot spot and the global heat transfer performance of the system. But the improvement effects of the increases of a and ? on the minimization of equivalent thermal resistance are different from those on the minimization of maximum thermal resistance. For either objective, the effect of a is different from that of ?. The T-shaped fin with minimum equivalent thermal resistance is much taller than that with minimum maximum thermal resistance; for either optimization objective, the stem of fin is thicker than the branches of fin, and the stem thickness is relatively close to branch thickness when the minimization of equivalent thermal resistance is taken as the optimization objective. The T-shaped fin with flat stem and slender branches can benefit the reduction of the maximum thermal resistance.
基金supported by the Tsinghua University Initiative Scientific Research Program
文摘Based on the finite time thermodynamics theory,the entransy theory and the entropy theory,the Stirling cycles under different conditions are analyzed and optimized with the maximum output power as the target in this paper.The applicability of entransy loss(EL),entransy dissipation(ED),entropy generation(EG),entropy generation number(EGN) and modified entropy generation number(MEGN) to the system optimization is investigated.The results show that the maximum EL rate corresponds to the maximum power output of the cycle working under the infinite heat reservoirs whose temperatures are prescribed,while the minimum EG rate and the extremum ED rate do not.For the Stirling cycle working under the finite heat reservoirs provided by the hot and cold streams whose inlet temperatures and the heat capacity flow rates are prescribed,the maximum EL rate,the minimum EG rate,the minimum EGN and the minimum MEGN all correspond to the maximum power output,but the extremum ED rate does not.When the heat capacity flow rate of the hot stream increases,the power output,the EL rate,the EG rate and the ED rate increase monotonously,while the EGN and the MEGN decrease first and then increase.The EL has best consistency in the power output optimizations of the Stirling cycles discussed in this paper.