One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, ...One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, we modifies a dual algorithm for constrained optimization problems and establishes a corresponding improved dual algorithm; It is proved that the improved dual algorithm has the local Q-superlinear convergence; Finally, we performed numerical experimentation using the improved dual algorithm for many constrained optimization problems, the numerical results are reported to show that it is valid in practical computation.展开更多
The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exac...The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.展开更多
基金Supported by the National 863 Project (2003AA002030)
文摘One class of effective methods for the optimization problem with inequality constraints are to transform the problem to a unconstrained optimization problem by constructing a smooth potential function. In this paper, we modifies a dual algorithm for constrained optimization problems and establishes a corresponding improved dual algorithm; It is proved that the improved dual algorithm has the local Q-superlinear convergence; Finally, we performed numerical experimentation using the improved dual algorithm for many constrained optimization problems, the numerical results are reported to show that it is valid in practical computation.
文摘The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.