期刊文献+
共找到472,537篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Multi-strategy Rabbit Optimizer for Large-scale Optimization
1
作者 Baowei Xiang Yixin Xiang 《Journal of Bionic Engineering》 2025年第1期398-416,共19页
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for th... As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020. 展开更多
关键词 adaptive parameter Large scale optimization Rabbit algorithm Swarm intelligence Engineering optimization
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
2
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
A body-fitted adaptive mesh and Helmholtz-type filter based parameterized level-set method for structural topology optimization
3
作者 Yijie Lu Xueying Chang +3 位作者 Zhengwei Zhang Hui Liu Yanguo Zhou Hao Li 《Acta Mechanica Sinica》 2025年第5期131-147,共17页
Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o... Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure. 展开更多
关键词 Topology optimization Parameterized level-set method Helmholtz-type filter Body-fitted adaptive mesh
原文传递
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
4
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
Scheduling Optimization and Adaptive Decision-Making Method for Self-organizing Manufacturing Systems Considering Dynamic Disturbances
5
作者 ZHANG Yi QIAO Senyu +2 位作者 YIN Leilei SUN Quan XIE Fupeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第3期297-309,共13页
The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are ... The production mode of manufacturing industry presents characteristics of multiple varieties,small-batch and personalization,leading to frequent disturbances in workshop.Traditional centralized scheduling methods are difficult to achieve efficient and real-time production management under dynamic disturbance.In order to improve the intelligence and adaptability of production scheduler,a novel distributed scheduling architecture is proposed,which has the ability to autonomously allocate tasks and handle disturbances.All production tasks are scheduled through autonomous collaboration and decision-making between intelligent machines.Firstly,the multi-agent technology is applied to build a self-organizing manufacturing system,enabling each machine to be equipped with the ability of active information interaction and joint-action execution.Secondly,various self-organizing collaboration strategies are designed to effectively facilitate cooperation and competition among multiple agents,thereby flexibly achieving global perception of environmental state.To ensure the adaptability and superiority of production decisions in dynamic environment,deep reinforcement learning is applied to build a smart production scheduler:Based on the perceived environment state,the scheduler intelligently generates the optimal production strategy to guide the task allocation and resource configuration.The feasibility and effectiveness of the proposed method are verified through three experimental scenarios using a discrete manufacturing workshop as the test bed.Compared to heuristic dispatching rules,the proposed method achieves an average performance improvement of 34.0%in three scenarios in terms of order tardiness.The proposed system can provide a new reference for the design of smart manufacturing systems. 展开更多
关键词 intlligent manufacturing adaptive scheduling self-organizing manufacturing system reinforcement learning
在线阅读 下载PDF
AMA:Adaptive Multimodal Adversarial Attack with Dynamic Perturbation Optimization
6
作者 Yufei Shi Ziwen He +2 位作者 Teng Jin Haochen Tong Zhangjie Fu 《Computer Modeling in Engineering & Sciences》 2025年第8期1831-1848,共18页
This article proposes an innovative adversarial attack method,AMA(Adaptive Multimodal Attack),which introduces an adaptive feedback mechanism by dynamically adjusting the perturbation strength.Specifically,AMA adjusts... This article proposes an innovative adversarial attack method,AMA(Adaptive Multimodal Attack),which introduces an adaptive feedback mechanism by dynamically adjusting the perturbation strength.Specifically,AMA adjusts perturbation amplitude based on task complexity and optimizes the perturbation direction based on the gradient direction in real time to enhance attack efficiency.Experimental results demonstrate that AMA elevates attack success rates from approximately 78.95%to 89.56%on visual question answering and from78.82%to 84.96%on visual reasoning tasks across representative vision-language benchmarks.These findings demonstrate AMA’s superior attack efficiency and reveal the vulnerability of current visual language models to carefully crafted adversarial examples,underscoring the need to enhance their robustness. 展开更多
关键词 Adversarial attack visual language model black-box attack adaptive multimodal attack disturbance intensity
在线阅读 下载PDF
Multi-mode acceleration optimization control for adaptive cycle engine based on variable geometry components
7
作者 Yifan WANG Haoying CHEN +1 位作者 Xuankai LIU Haibo ZHANG 《Chinese Journal of Aeronautics》 2025年第9期3-25,共23页
The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of... The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%. 展开更多
关键词 adaptive cycle engine Mode transition Multivariate acceleration plan Sequential quadratic planning Variable geometry components
原文传递
An Adaptive and Parallel Metaheuristic Framework for Wrapper-Based Feature Selection Using Arctic Puffin Optimization
8
作者 Wy-Liang Cheng Wei Hong Lim +5 位作者 Kim Soon Chong Sew Sun Tiang Yit Hong Choo El-Sayed M.El-kenawy Amal H.Alharbi Marwa M.Eid 《Computers, Materials & Continua》 2025年第10期2021-2050,共30页
The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are c... The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios. 展开更多
关键词 Wrapper-based feature selection Arctic puffin optimization metaheuristic search algorithm
在线阅读 下载PDF
An Online Optimization of Prediction-Enhanced Digital Twin Migration over Edge Computing with Adaptive Information Updating
9
作者 Xinyu Yu Lucheng Chen +3 位作者 Xingzhi Feng Xiaoping Lu Yuye Yang You Shi 《Computers, Materials & Continua》 2025年第11期3231-3252,共22页
This paper investigates mobility-aware online optimization for digital twin(DT)-assisted task execution in edge computing environments.In such systems,DTs,hosted on edge servers(ESs),require proactive migration to mai... This paper investigates mobility-aware online optimization for digital twin(DT)-assisted task execution in edge computing environments.In such systems,DTs,hosted on edge servers(ESs),require proactive migration to maintain proximity to their mobile physical twin(PT)counterparts.To minimize task response latency under a stringent energy consumption constraint,we jointly optimize three key components:the status data uploading frequency fromthe PT,theDT migration decisions,and the allocation of computational and communication resources.To address the asynchronous nature of these decisions,we propose a novel two-timescale mobility-aware online optimization(TMO)framework.The TMO scheme leverages an extended two-timescale Lyapunov optimization framework to decompose the long-term problem into sequential subproblems.At the larger timescale,a multi-armed bandit(MAB)algorithm is employed to dynamically learn the optimal status data uploading frequency.Within each shorter timescale,we first employ a gated recurrent unit(GRU)-based predictor to forecast the PT’s trajectory.Based on this prediction,an alternate minimization(AM)algorithm is then utilized to solve for the DT migration and resource allocation variables.Theoretical analysis confirms that the proposed TMO scheme is asymptotically optimal.Furthermore,simulation results demonstrate its significant performance gains over existing benchmark methods. 展开更多
关键词 Digital twin edge computing proactive migration mobility prediction two-timescale online optimization
在线阅读 下载PDF
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
10
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Transformer-Enhanced Intelligent Microgrid Self-Healing:Integrating Large Language Models and Adaptive Optimization for Real-Time Fault Detection and Recovery
11
作者 Qiang Gao Lei Shen +9 位作者 Jiaming Shi Xinfa Gu Shanyun Gu Yuwei Ge Yang Xie Xiaoqiong Zhu Baoguo Zang Ming Zhang Muhammad Shahzad Nazir Jie Ji 《Energy Engineering》 2025年第7期2767-2800,共34页
The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying... The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures. 展开更多
关键词 Large language model MICROGRID fault localization grid self-healing mechanism improved ant colony optimization algorithm
在线阅读 下载PDF
基于Adaptive LASSO模型辅助校准的非概率样本与概率样本融合研究
12
作者 王小宁 孙敏 邹梦文 《调研世界》 2025年第9期84-96,共13页
在过往的调查研究中,大部分统计研究者所使用的都是概率样本进行估计,但随着数据技术的发展与概率抽样成本的增加,非概率抽样的时效性与便捷性使其使用率日益上升。基于这一研究背景,考虑辅助变量高维的情况下,将Adaptive LASSO引入模... 在过往的调查研究中,大部分统计研究者所使用的都是概率样本进行估计,但随着数据技术的发展与概率抽样成本的增加,非概率抽样的时效性与便捷性使其使用率日益上升。基于这一研究背景,考虑辅助变量高维的情况下,将Adaptive LASSO引入模型辅助校准估计法,筛选出相关性强的辅助变量对非概率样本的权数进行校准,解决由于非概率样本入样概率未知而导致难以进行统计推断的问题,实现非概率样本与概率样本融合来估计总体。通过模拟分析以及利用网民社会意识调查和中国社会状况综合调查两个数据集进行的实证分析,验证了本文提出的基于Adaptive LASSO进行模型辅助校准的数据融合方法可有效提高估计的精度。 展开更多
关键词 数据融合 模型辅助校准 adaptive LASSO
在线阅读 下载PDF
Multi-surrogate framework with an adaptive selection mechanism for production optimization 被引量:1
13
作者 Jia-Lin Wang Li-Ming Zhang +10 位作者 Kai Zhang Jian Wang Jian-Ping Zhou Wen-Feng Peng Fa-Liang Yin Chao Zhong Xia Yan Pi-Yang Liu Hua-Qing Zhang Yong-Fei Yang Hai Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期366-383,共18页
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc... Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems. 展开更多
关键词 Production optimization Multi-surrogate models Multi-evolutionary algorithms Dimension reduction Broad learning system
原文传递
Aerodynamic optimization of an adaptive flap for next-generation green aircraft 被引量:1
14
作者 Tianlong LIN Rosario PECORA +2 位作者 Danilo CILIBERTI Wei XIA Shuling HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期100-122,共23页
Adaptive,morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related ... Adaptive,morphing flaps are taking ever-increasing attention in civil aviation thanks to the expected benefits this technology can bring at the aircraft level in terms of high-lift performance improvement and related fuel burnt reduction per flight.Relying upon morphing capabilities,it is possible to fix a unique setting for the flap and adapt the flap shape to match the aerodynamic requirements for take-off or landing.The proper morphed shapes can assure better high-lift performances than those achievable by referring to a conventional flap.Moreover,standing the unique flap setting for take-off and landing,a dramatic simplification of the flap deployment systems may be achieved.As a consequence of this simplification,the deployment system can be fully hosted in the wing,thus avoiding under-wing nacelles with significantly better aerodynamics and fuel consumption.The first step for a rational design of an adaptive flap consists in defining the target morphed shapes and the unique optimal flap setting in the take-off and landing phases.In this work,aerodynamic optimization analyses are carried out to determine the best flap setting and related morphed shapes in compliance with the take-off and landing requirements of a reference civil transport aircraft.Four different initial conditions are adopted to avoid the optimization falling into local optima,thus obtaining four groups of optimal candidate configurations.After comparing each candidate’s performance through 2D and 3D simulations,the optimal configuration has been selected.2D simulations show that the optimal configuration is characterized by a maximum lift increase of 31.92%in take-off and 9.04%in landing.According to 3D simulations,the rise in maximum lift equals 22.26%in take-off and 3.50%in landing.Numerical results are finally verified through wind tunnel tests,and the aerodynamic mechanism behind the obtained improvements is explained by carefully analyzing the flow field around the flap. 展开更多
关键词 Morphing wings High-lift system adaptive flap Computational Fluid Dynamics(CFD) Wind tunnel tests
原文传递
Adaptive State-Dependent Diffusion for Derivative-Free Optimization
15
作者 Bjorn Engquist Kui Ren Yunan Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1241-1269,共29页
This paper develops and analyzes a stochastic derivative-free optimization strategy.A key feature is the state-dependent adaptive variance.We prove global convergence in probability with algebraic rate and give the qu... This paper develops and analyzes a stochastic derivative-free optimization strategy.A key feature is the state-dependent adaptive variance.We prove global convergence in probability with algebraic rate and give the quantitative results in numerical examples.A striking fact is that convergence is achieved without explicit information of the gradient and even without comparing different objective function values as in established methods such as the simplex method and simulated annealing.It can otherwise be compared to annealing with state-dependent temperature. 展开更多
关键词 Derivative-free optimization Global optimization adaptive diffusion Stationary distribution Fokker-Planck theory
在线阅读 下载PDF
Design and Optimization Analysis of an Adaptive Knee Exoskeleton
16
作者 Xinhua Yang Sheng Guo +3 位作者 Peiyi Wang Yifan Wu Lianzheng Niu Duxin Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第5期387-408,共22页
To solve the problem of undesired relative motion of human-machine interaction positions caused by misalignment of the human-machine joints rotation axis of the knee exoskeleton,this study designed an adaptive knee ex... To solve the problem of undesired relative motion of human-machine interaction positions caused by misalignment of the human-machine joints rotation axis of the knee exoskeleton,this study designed an adaptive knee exoskeleton based on a gear-link mechanism(GLM)by considering the human body as a component of the exoskeleton mechanism.Simultaneously,the concept of the wearable area(WA)was proposed,which transformed the operation of aligning the exoskeleton rotation axis with the human knee joint rotation axis into a"face alignment point"in the sagittal plane,reducing the difficulty of aligning the human-machine joint rotation axis.In the kinematic analysis of GLM,the phenomenon of instantaneous movement of the central axis of the human knee joint was considered.Based on the kinematic model,the WA,velocity transfer ratio,and initial position static stiffness of GLM were analyzed.The NSGA-II optimization algorithm was used to optimize the size parameters of GLM,which increased the WA by 18.4%,the average velocity transfer ratio by 4.98%,and the average initial position static stiffness by 6.01%.Finally,the ability of the exoskeleton to absorb movement displacement(MD)was verified through simulation,and the good human-machine kinematic compatibility of the exoskeleton was verified through wearable tests conducted on the initial mechanism principle prototype. 展开更多
关键词 adaptive knee exoskeleton Gear-link mechanism Wearable area optimization Simulation
在线阅读 下载PDF
An Adaptive Strategy-incorporated Integer Genetic Algorithm for Wind Farm Layout Optimization
17
作者 Tao Zheng Haotian Li +2 位作者 Houtian He Zhenyu Lei Shangce Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1522-1540,共19页
Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.W... Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA. 展开更多
关键词 Wind farm layout optimization problem Meta-heuristic algorithms adaptive Integer genetic algorithm
在线阅读 下载PDF
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
18
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted Gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
19
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 adaptive Grasshopper optimization Algorithm(AGOA) Cluster Head(CH) network lifetime Teaching-Learning-based optimization Algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search
20
作者 Yaren Aydın Gebrail Bekdas +1 位作者 Sinan Melih Nigdeli Zong Woo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2471-2499,共29页
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ... Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems. 展开更多
关键词 Passive control optimum design parameter optimization tuned mass damper inerter time domain adaptive harmony search algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部