Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s...Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.展开更多
The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilizat...The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.展开更多
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a...High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.展开更多
A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are ...A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are modeled by level set functions.Secondly,the mathematical model of the additive direction optimization problem is established,and an improved particle swarm optimization algorithm is designed to decide the best additive direction.Then,the two-step strategy is used to plan the hybrid manufacturing alternating sequence.The target parts are directly divided into various processing regions;each processing region is optimized based on manufacturability and manufacturing efficiency,and the optimal hybrid manufacturing alternating sequence is obtained by merging some processing regions.Finally,the method is used to outline the process plan of the designed example model and applied to the actual hybrid manufacturing process of the model.The manufacturing result shows that the method can meet the main considerations in hybrid manufacturing.In addition,the degree of automation of process planning is high,and the dependence on manual intervention is low.展开更多
Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradien...Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradients(25,50,75%)were prepared to investigate the effects of extraction solvents on the extraction efficiency of benzoic acid.The influences of ultrasonic frequency(35,50 Hz),ultrasonic power(40,60,80,100 W),ultrasonic time(10,20,30,40,50,60 minutes),and ultrasonic temperature(20,30,40,50℃)on the extraction efficiency were examined.Orthogonal experiments were conducted to analyze the effects of temperature,time,and ultrasonic power on the extraction efficiency and to screen the optimal ultrasonic extraction process.Results Various influencing factors had certain effects on the extraction efficiency of benzoic acid from P.lactiflora Pall.Single-factor analysis revealed that 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic power of 40 W,ultrasonic time of 10minutes,and ultrasonic temperature of 30℃yielded the highest extraction efficiency for benzoic acid.The order of influence of different factors on the extraction efficiency was temperature>time>power.The optimal conditions obtained from orthogonal experiments were:extraction solvent of 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃.Conclusion Under the conditions of 25%methanol as the extraction solvent,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃,the extraction efficiency of benzoic acid from P.lactiflora Pall.was the highest.This method offers advantages such as simple operation,small sample size requirement,and low solvent consumption,providing a reliable analytical approach for quality control and safety evaluation of P.lactiflora Pall.展开更多
This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the ...This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the PDCA cycle,alongside the application of BIM and AR technologies.The key preparatory measures were outlined in this study and the functions of the management system was mentioned.Through case comparisons,this paper demonstrated that these optimizations can significantly improve efficiency and quality,support the development of an evaluation system to verify results,and highlight the critical role of organizational support.展开更多
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u...The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.展开更多
Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via l...Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment.展开更多
In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional proc...In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional procurement in a one-stop way.The integration of this management process superficially improves labor productivity,but in essence lacks effective checks and balances and supervision.In order to supervise the project procurement management process and ensure the legal compliance of procurement management,this paper studies the project procurement management process of telecommunication enterprises,proposes the optimization process of project procurement management in the segmentation of purchasing manager-business manager,and constructs a matrix project procurement management model,which will contribute to the overall improvement of the telecommunication enterprises’procurement performance.展开更多
The growing demand for carbon neutrality has heightened the focus on CO_(2)hydrogenation as a viable strategy for transforming carbon dioxide into valuable chemicals and fuels.Advanced machine learning(ML)approaches i...The growing demand for carbon neutrality has heightened the focus on CO_(2)hydrogenation as a viable strategy for transforming carbon dioxide into valuable chemicals and fuels.Advanced machine learning(ML)approaches integrate materials science with artificial intelligence,enabling scientists to identify hidden patterns in datasets,make informed decisions,and reduce the need for labor-intensive,repetitive experimentation.This review provides a comprehensive overview of ML applications in the thermocatalytic hydrogenation of CO_(2).Following an introduction to ML tools and workflows,various ML algorithms employed in CO_(2)hydrogenation are systematically categorized and reviewed.Next,the application of ML in catalyst discovery is discussed,highlighting its role in identifying optimal compositions and structures.Then,ML-driven strategies for process optimization,particularly in enhancing CO_(2)conversion and product selectivity,are examined.Studies modeling descriptors,spanning catalyst properties and reaction conditions,to predict catalytic performance are analyzed.Consequently,ML-based mechanistic studies are reviewed to elucidate reaction pathways,identify key intermediates,and optimize catalyst performance.Finally,key challenges and future perspectives in leveraging ML for advancing CO_(2)hydrogenation research are presented.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synt...To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.展开更多
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an...Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-...A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.展开更多
The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic c...The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic calculation was discussed. A quadratic model was suggested by RSM to correlate the key parameters, namely, dos-age of chlorinating agent, roasting temperature and roasting time to the copper volatilization ratio. The results indi- cate that the model is well consistent with the experimental data at a correlation coefficient (R2) of 0.95, and the dosage of chlorinating agent and roasting temperature both have significant effects on the copper volatilization ratio. However, a roasting temperature exceeding 1170 ~C decreases the volatilization ratio. The optimum conditions for removing copper from the cinder were identified as chlorinating agent dosage at 5%, roasting temperature at i155.10 ℃ and roasting time of 10 min; under Such a conditiom a copper volatilization ratid of 95.16% Was a- chieved from the cinder. Thermodynamic calculation shows that SiO2 in the pellet plays a key role in the chlorine re-lease from calcium chloride, and the chlorine release reactions cannot occur without it.展开更多
Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine h...Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.展开更多
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at...The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.展开更多
Rare earth carbonate precipitation is mainly amorphous,of large volume and difficult to filter.To prepare crystalline rare earth carbonate,mother liquor of heavy rare earth was taken as research object,and the experim...Rare earth carbonate precipitation is mainly amorphous,of large volume and difficult to filter.To prepare crystalline rare earth carbonate,mother liquor of heavy rare earth was taken as research object,and the experimental scheme was designed based on the response surface central composite design(CCD)method.The concentration of mother liquor,aging time and seed crystal dosage were taken as independent variables,and the particle size of rare earth carbonate was taken as the response value to establish a quadratic polynomial numerical model to optimize the reactive-crystallization process of rare earth carbonate.The results show that these three factors have significant effect on the particle size of rare earth carbonate,and the influence order is mother liquid concentration>aging time>seed crystal dosage.Moreover,the interaction between mother liquor concentration and seed crystal dosage has a significant effect on the size of rare earth carbonate particles.The optimal parameters predicted by the model are as follows:the concentration of mother liquid is 1.75 g/L,seed crystal dosage is 13.56 wt%,and aging time is 8 h.Under these conditions,the predicted particle size is 28.74μm,and the experiment particle size is 28.23μm,between both,the relative error is 0.73%,which indicates that the established response surface model has a good prediction effect and a certain practical significance to guide the reactive-crystallization process of rare earth carbonate.The obtained rare earth carbonate has a crystallinity of 97.82%,uniform particles size,and low-hydrated crystals with a tengerite structure.展开更多
3-Dvelocity and temperature fields of mold filling and solidification processes of large-sized castingswere calculated,and the efficiency and accuracy of numerical calculation were studied.The mold filling andsolidifi...3-Dvelocity and temperature fields of mold filling and solidification processes of large-sized castingswere calculated,and the efficiency and accuracy of numerical calculation were studied.The mold filling andsolidification processes of large-sized stainless steel,iron and aluminum alloy castings were simulated by using ofnew scheme;their casting processes were optimized,and then applied to produce castings.展开更多
文摘Objective:To investigate the application effects of intelligent guidance systems in optimizing health check-up process management.Methods:A total of 400 examinees who underwent physical examinations at the hospital’s Health Management Center from January to December 2024 were randomly divided into a control group(200 cases)and an observation group(200 cases).The control group used traditional manual guidance methods,while the observation group employed the intelligent guidance system.The study compared two groups in terms of completion time,waiting time for each procedure,check-up efficiency scores,examinee satisfaction,and report issuance time.Results:The overall examination time in the observation group(85.3±12.7 minutes)was significantly shorter than that in the control group(142.6±18.5 minutes)(P<0.01);average waiting time per procedure decreased by 62.4%;check-up efficiency scores(8.9±0.8 points)were significantly higher than those in the control group(5.2±1.1 points)(P<0.01);satisfaction reached 96.5%,significantly higher than the control group’s 78.0%(P<0.01);and report issuance time was advanced by 1.5 days.Conclusion:Intelligent guidance systems can significantly optimize check-up processes,improve work efficiency,and examinee satisfaction,demonstrating significant clinical application value.
基金Supported by the Funds from Central Government for Guiding Local Science and Technology Development(ZY20230102)Planning Project of Scientific Research and Technology Development in Guilin(20220104-4,20210202-1)Science and Technology Planing Project of Guangxi(Guike AB24010263).
文摘The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.
基金supported by the National Key Research and Development Program of China(No.2020YFC1908702)the National Natural Science Foundation of China(No.52131002)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22dz1209200)China Three Gorges Corporation(No.202403018).
文摘High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
基金The National Natural Science Foundation of China(No.52305381)the Natural Science Foundation of Jiangsu Province(No.BK20210351)the Fundamental Research Funds for the Central Universities(No.30923011008).
文摘A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are modeled by level set functions.Secondly,the mathematical model of the additive direction optimization problem is established,and an improved particle swarm optimization algorithm is designed to decide the best additive direction.Then,the two-step strategy is used to plan the hybrid manufacturing alternating sequence.The target parts are directly divided into various processing regions;each processing region is optimized based on manufacturability and manufacturing efficiency,and the optimal hybrid manufacturing alternating sequence is obtained by merging some processing regions.Finally,the method is used to outline the process plan of the designed example model and applied to the actual hybrid manufacturing process of the model.The manufacturing result shows that the method can meet the main considerations in hybrid manufacturing.In addition,the degree of automation of process planning is high,and the dependence on manual intervention is low.
基金supported by the Heilongjiang Provincial Administration of Traditional Chinese Medicine Project(ZHY18-153).
文摘Objective To optimize the ultrasonic extraction process for benzoic acid as a harmful substance in Paeonia lactiflora Pall.(P.lactiflora Pall.).Methods Methanol and ethanol solutions at different concentration gradients(25,50,75%)were prepared to investigate the effects of extraction solvents on the extraction efficiency of benzoic acid.The influences of ultrasonic frequency(35,50 Hz),ultrasonic power(40,60,80,100 W),ultrasonic time(10,20,30,40,50,60 minutes),and ultrasonic temperature(20,30,40,50℃)on the extraction efficiency were examined.Orthogonal experiments were conducted to analyze the effects of temperature,time,and ultrasonic power on the extraction efficiency and to screen the optimal ultrasonic extraction process.Results Various influencing factors had certain effects on the extraction efficiency of benzoic acid from P.lactiflora Pall.Single-factor analysis revealed that 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic power of 40 W,ultrasonic time of 10minutes,and ultrasonic temperature of 30℃yielded the highest extraction efficiency for benzoic acid.The order of influence of different factors on the extraction efficiency was temperature>time>power.The optimal conditions obtained from orthogonal experiments were:extraction solvent of 25%methanol,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃.Conclusion Under the conditions of 25%methanol as the extraction solvent,ultrasonic frequency of 50 Hz,ultrasonic time of 20 minutes,ultrasonic power of 40 W,and ultrasonic temperature of 30℃,the extraction efficiency of benzoic acid from P.lactiflora Pall.was the highest.This method offers advantages such as simple operation,small sample size requirement,and low solvent consumption,providing a reliable analytical approach for quality control and safety evaluation of P.lactiflora Pall.
文摘This paper examines the challenges in the technical briefing process for construction projects,including a three-level system and issues related to formalization.An optimization approaches was introduced based on the PDCA cycle,alongside the application of BIM and AR technologies.The key preparatory measures were outlined in this study and the functions of the management system was mentioned.Through case comparisons,this paper demonstrated that these optimizations can significantly improve efficiency and quality,support the development of an evaluation system to verify results,and highlight the critical role of organizational support.
基金supported by the National Natural Science Foundation of China(22408227,22238005)the Postdoctoral Research Foundation of China(GZC20231576).
文摘The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes.
基金supported by National Natural Science Foundation of China(Grant Nos.5233500651975073)State Key Laboratory of Mechanical Transmission for Advanced Equipment(Grant No.SKLMT-MSKFKT-202104).
文摘Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment.
文摘In the project procurement management process of telecommunication enterprises,due to the complexity of technology,the professional procurement project manager is responsible for the whole process of professional procurement in a one-stop way.The integration of this management process superficially improves labor productivity,but in essence lacks effective checks and balances and supervision.In order to supervise the project procurement management process and ensure the legal compliance of procurement management,this paper studies the project procurement management process of telecommunication enterprises,proposes the optimization process of project procurement management in the segmentation of purchasing manager-business manager,and constructs a matrix project procurement management model,which will contribute to the overall improvement of the telecommunication enterprises’procurement performance.
文摘The growing demand for carbon neutrality has heightened the focus on CO_(2)hydrogenation as a viable strategy for transforming carbon dioxide into valuable chemicals and fuels.Advanced machine learning(ML)approaches integrate materials science with artificial intelligence,enabling scientists to identify hidden patterns in datasets,make informed decisions,and reduce the need for labor-intensive,repetitive experimentation.This review provides a comprehensive overview of ML applications in the thermocatalytic hydrogenation of CO_(2).Following an introduction to ML tools and workflows,various ML algorithms employed in CO_(2)hydrogenation are systematically categorized and reviewed.Next,the application of ML in catalyst discovery is discussed,highlighting its role in identifying optimal compositions and structures.Then,ML-driven strategies for process optimization,particularly in enhancing CO_(2)conversion and product selectivity,are examined.Studies modeling descriptors,spanning catalyst properties and reaction conditions,to predict catalytic performance are analyzed.Consequently,ML-based mechanistic studies are reviewed to elucidate reaction pathways,identify key intermediates,and optimize catalyst performance.Finally,key challenges and future perspectives in leveraging ML for advancing CO_(2)hydrogenation research are presented.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
基金financial supports from the National Natural Science Foundation of China-Youth Project(51801076)the Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province(18KJB430009)+1 种基金the Postdoctoral Research Support Project of Jiangsu Province(1601055C)the Senior Talents Research Startup of Jiangsu University(14JDG126)。
文摘To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications.
基金supported by the National Key R&D Program of China(No.2022YFA1005204l)。
文摘Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.
基金Item Sponsored by National Natural Science Foundation of China(u0837602,51104076)
文摘The aim is to remove copper from a pyrite cinder by optimizing the chlorination roasting process using re-sponse surface methodology (RSM) and the reaction mechanism of chlorination roasting based on thermodynamic calculation was discussed. A quadratic model was suggested by RSM to correlate the key parameters, namely, dos-age of chlorinating agent, roasting temperature and roasting time to the copper volatilization ratio. The results indi- cate that the model is well consistent with the experimental data at a correlation coefficient (R2) of 0.95, and the dosage of chlorinating agent and roasting temperature both have significant effects on the copper volatilization ratio. However, a roasting temperature exceeding 1170 ~C decreases the volatilization ratio. The optimum conditions for removing copper from the cinder were identified as chlorinating agent dosage at 5%, roasting temperature at i155.10 ℃ and roasting time of 10 min; under Such a conditiom a copper volatilization ratid of 95.16% Was a- chieved from the cinder. Thermodynamic calculation shows that SiO2 in the pellet plays a key role in the chlorine re-lease from calcium chloride, and the chlorine release reactions cannot occur without it.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202002)the National Project for Standardization of Chinese Materia Medica (ZYBZH-C-GD-04)。
文摘Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.
基金financially supported by the National Natural Science Foundation of China(No.51371152)
文摘The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.
基金Project supported by the National Natural Science Foundation of China(51674125,51604128,51874150)the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology(jxxjbs19020)+2 种基金Jiangxi Provincial Department of Education Science and Technology Research Project(GJJ190486)Outstanding Doctoral Dissertation Project Fund of JXUST(YB2016001)Jiangxi Outstanding Young Talents Program(20192BCB23017)。
文摘Rare earth carbonate precipitation is mainly amorphous,of large volume and difficult to filter.To prepare crystalline rare earth carbonate,mother liquor of heavy rare earth was taken as research object,and the experimental scheme was designed based on the response surface central composite design(CCD)method.The concentration of mother liquor,aging time and seed crystal dosage were taken as independent variables,and the particle size of rare earth carbonate was taken as the response value to establish a quadratic polynomial numerical model to optimize the reactive-crystallization process of rare earth carbonate.The results show that these three factors have significant effect on the particle size of rare earth carbonate,and the influence order is mother liquid concentration>aging time>seed crystal dosage.Moreover,the interaction between mother liquor concentration and seed crystal dosage has a significant effect on the size of rare earth carbonate particles.The optimal parameters predicted by the model are as follows:the concentration of mother liquid is 1.75 g/L,seed crystal dosage is 13.56 wt%,and aging time is 8 h.Under these conditions,the predicted particle size is 28.74μm,and the experiment particle size is 28.23μm,between both,the relative error is 0.73%,which indicates that the established response surface model has a good prediction effect and a certain practical significance to guide the reactive-crystallization process of rare earth carbonate.The obtained rare earth carbonate has a crystallinity of 97.82%,uniform particles size,and low-hydrated crystals with a tengerite structure.
文摘3-Dvelocity and temperature fields of mold filling and solidification processes of large-sized castingswere calculated,and the efficiency and accuracy of numerical calculation were studied.The mold filling andsolidification processes of large-sized stainless steel,iron and aluminum alloy castings were simulated by using ofnew scheme;their casting processes were optimized,and then applied to produce castings.