The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable deve...The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.展开更多
Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (...To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (PERT), some optimization models are proposed, which include the implementation schedule model, the timecost trade-off model, the quality model, and the implementation time-cost-quality synthetic optimization model. A PERT-embedded genetic algorithm (GA) based on stochastic simulation technique is introduced to the optimization models solution. Finally, an example is presented to show that the models and algorithm are reasonable and effective, which can offer a reliable quantitative decision method for ERP implementation.展开更多
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle ...This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization(PSO). Then, a predicting model for NO_x emission is established on support vector machine(SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last,the operating parameters are optimized by the improved PSO to cut down the NO_x emission. An application on 600 MW unit shows that the new optimization model can cut down NO_x emission effectively and maintain the load balance well. The NO_x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO_x combustion in the power plant.展开更多
China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of ne...China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of new energies is the limited flexibility of regulations on power system resources,resulting in insufficient consumption capacity.Thus,the flexible resource costs for peak shaving as well as the reasonable coordinated development and operation optimization of regional renewable energy need to be considered.In this study,a renewable energy development layout configuration analysis method was established by considering the composite cost of a power system,comprehensively analyzing the potential of various flexibility regulation resources for the power system and its composite peak shaving cost,and combining renewable energy output characteristics,load forecasting,grid development,and other factors.For the optimization of various flexible resource utilization methods,a peak shaving cost estimation method from the perspective of the entire power system was established by combining the on-grid electricity prices and operating costs of different power sources.A collaborative optimization model of power system operation that aims at the lowest peak shaving cost and satisfies the constraints of operation,safety,and environmental protection was proposed.Finally,a certain area of Gansu Province was used as an example to perform detailed analysis and calculation,which demonstrated that the model has an optimal effect.This model can provide an analysis method for regional renewable energy development layout configurations and system optimization operations.展开更多
According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we intro...According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.展开更多
Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the au...Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the authors conducted a survey on 204 rural household in Cambodia. This article uses the optimization model, considering rural labor, cattle size, and animal disease risk, to analyze and get optimum result range. The result shows that the more off-farm job opportunity, suitable cattle feed structure, and investment on public health for cattle, the household income in rural Cambodia will increase.展开更多
The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainla...The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.展开更多
Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible expl...Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible explanation of this can be found in the unique nature of the forest management area which is populated with various kinds of rare and endangered species.This issue has been brought to light as a result of the nomination of northern Okinawa Island in 2018 as a candidate for World Natural Heritage site.The nomination has raised public awareness to the possibility of conflicting management objectives between timber extraction and the conservation of habitat for forest-dependent wildlife species.Managing exclusively for one objective over the other may fail to meet the demand for both forest products and wildlife habitat,ultimately jeopardizing the stability of human and wildlife communities.It is therefore important to achieve a better balance between the objective of timber production and conservation of wildlife habitat.Despite the significance of this subject area,current ongoing discussions on how to effectively manage for forest resources,often lack scientific basis to make sound judgement or evaluate tradeoffs between conflicting objectives.Quantifying the effect of these forest management activities on wildlife habitat provides useful and important information needed to make forest management and policy decisions.In this study we develop a spatial timber harvest scheduling model that incorporates habitat suitability index(HSI)models for the Okinawa Rail(Gallirallus okinawae),an endangered avian species found on Okinawa,Japan.To illustrate how the proposed coupling model assembles spatial information,which ultimately aids the study of forest management effects on wildlife habitat,we apply these models to a forest area in Okinawa and conduct a simple simulation analysis.展开更多
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating...Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.展开更多
A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future e...A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future energy system planning and resource allocation.This study focusses on long-term energy system optimization model.The important uncertain parameters in the model are analyzed and divided into policy,economic,and technical factors.This study specifically addresses the challenges related to carbon emission reduction and energy transition.It involves collecting and organizing relevant research on uncertainty analysis of long-term energy systems.Various energy system uncertainty modeling methods and their applications from the literature are summarized in this review.Finally,important uncertainty factors and uncertainty modeling methods for long-term energy system modeling are discussed,and future research directions are proposed.展开更多
Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance...Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with genetic algorithm is formulated . It is found that the company can produce an effective and efficient schedules to deploy the manpower and equipment resources. Simulation is used to verify the method and a MATLAB program is used to code the genetic algorithm. This model i s further illustrated by a case study in Hong Kong and the benefit elaborated. F inally, a conclusion is made to summarize the experience of this project and pro vide further improvement.展开更多
In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web str...In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.展开更多
This paper presents an advanced methodology for optimizing a UK network load demand with various uncertainties which are related to individual driving behaviours. Without the optimized regulation for traditional power...This paper presents an advanced methodology for optimizing a UK network load demand with various uncertainties which are related to individual driving behaviours. Without the optimized regulation for traditional power system demand, EVs (electric vehicles) would have an adverse impact on the stability of power systems. This becomes more significant for large-scale EVs plugging into the power grid. Traditional optimized methodologies are effective only for EV charging. The proposed techniques improve the system flexibility and stability through an advanced optimization model and flexible bidirectional charging/discharging control. Three scenarios with different charging and discharging power levels and various penetration levels of EVs are discussed in detail in this paper. Simulation results demonstrate that bidirectional EV power flow control has vast potentials to improve the load demand profile, with increased proportion of EVs, and charging/discharging power levels.展开更多
The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calcula...The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learnin...With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.52174065)the National Natural Science Foundation of China (Grant No.52304071)+1 种基金China University of Petroleum,Beijing (Grant No.ZX20220040)MOE Key Laboratory of Petroleum Engineering (China University of Petroleum,No.2462024PTJS002)。
文摘The carbon emissions and cost during the construction phase are significant contributors to the oilfield lifecycle.As oilfields enter the late stage,the adaptability of facilities decreases.To achieve sustainable development,oilfield reconstruction was usually conducted in discrete rather than continuous space.Motivated by economic and sustainability goals,a 3-phase heuristic model for oilfield reconstruction was developed to mine potential locations in continuous space.In phase 1,considering the process characteristics of the oil and gas gathering system,potential locations were mined in continuous space.In phase 2,incorporating comprehensive reconstruction measures,a reconstruction model was established in discrete space.In phase 3,the topology was further adjusted in continuous space.Subsequently,the model was transformed into a single-objective mixed integer linear programming model using the augmented ε-constraint method.Numerical experiments revealed that the small number of potential locations could effectively reduce the reconstruction cost,and the quality of potential locations mined in phase 1 surpassed those generated in random or grid form.Case studies showed that cost and carbon emissions for a new block were reduced by up to 10.45% and 7.21 %,respectively.These reductions were because the potential locations mined in 1P reduced the number of metering stations,and 3P adjusted the locations of metering stations in continuous space to shorten the pipeline length.For an old oilfield,the load and connection ratios of the old metering station increased to 89.7% and 94.9%,respectively,enhancing operation efficiency.Meanwhile,recycling facilitated the diversification of reconstruction measures and yielded a profit of 582,573 ¥,constituting 5.56% of the total cost.This study adopted comprehensive reconstruction measures and tapped into potential reductions in cost and carbon emissions for oilfield reconstruction,offering valuable insights for future oilfield design and construction.
文摘Based on the optimization method, a new modified GM (1,1) model is presented, which is characterized by more accuracy prediction for the grey modeling.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金the National High-Tech. R & D Program for CIMS, China (2003AA413210).
文摘To study the uncertain optimization problems on implementation schedule, time-cost trade-off and quality in enterprise resource planning (ERP) implementation, combined with program evaluation and review technique (PERT), some optimization models are proposed, which include the implementation schedule model, the timecost trade-off model, the quality model, and the implementation time-cost-quality synthetic optimization model. A PERT-embedded genetic algorithm (GA) based on stochastic simulation technique is introduced to the optimization models solution. Finally, an example is presented to show that the models and algorithm are reasonable and effective, which can offer a reliable quantitative decision method for ERP implementation.
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.
基金the National Natural Science Foundation of China(No.51406077)the Natural Science Foundation of Jiangsu Province(No.12KJB470008)
文摘This paper focuses on the combustion optimization to cut down NO_x emission with a new strategy.Firstly, orthogonal experimental design(OED) and chaotic sequences are introduced to improve the performance of particle swarm optimization(PSO). Then, a predicting model for NO_x emission is established on support vector machine(SVM) whose parameters are optimized by the improved PSO. Afterwards, a new optimization model considering coal quantity and air quantity along with the traditional optimization variables is established. At last,the operating parameters are optimized by the improved PSO to cut down the NO_x emission. An application on 600 MW unit shows that the new optimization model can cut down NO_x emission effectively and maintain the load balance well. The NO_x emission optimized by the improved PSO is lowest among some state-of-the-art intelligent algorithms. This study can provide important guides for the low NO_x combustion in the power plant.
基金the National Natural Science Foundation of China(No.71273088).
文摘China has set carbon emission goals for 2030 and 2060.Renewable energy sources,primarily wind and photovoltaic power,are being considered as the future of power generation.The major limitation to the development of new energies is the limited flexibility of regulations on power system resources,resulting in insufficient consumption capacity.Thus,the flexible resource costs for peak shaving as well as the reasonable coordinated development and operation optimization of regional renewable energy need to be considered.In this study,a renewable energy development layout configuration analysis method was established by considering the composite cost of a power system,comprehensively analyzing the potential of various flexibility regulation resources for the power system and its composite peak shaving cost,and combining renewable energy output characteristics,load forecasting,grid development,and other factors.For the optimization of various flexible resource utilization methods,a peak shaving cost estimation method from the perspective of the entire power system was established by combining the on-grid electricity prices and operating costs of different power sources.A collaborative optimization model of power system operation that aims at the lowest peak shaving cost and satisfies the constraints of operation,safety,and environmental protection was proposed.Finally,a certain area of Gansu Province was used as an example to perform detailed analysis and calculation,which demonstrated that the model has an optimal effect.This model can provide an analysis method for regional renewable energy development layout configurations and system optimization operations.
基金Supported by the National Natural Science Foundation (70971059) the Liaoning Provincial Programs lbr Science and Technology Development (2011229011)
文摘According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.
文摘Cambodia is one of the Southeast Asia. With the agricultural market integration, Cambodia rural household is adjusting livestock structure naturally. In order to provide suitable support for agriculture policy, the authors conducted a survey on 204 rural household in Cambodia. This article uses the optimization model, considering rural labor, cattle size, and animal disease risk, to analyze and get optimum result range. The result shows that the more off-farm job opportunity, suitable cattle feed structure, and investment on public health for cattle, the household income in rural Cambodia will increase.
基金This project was sponsored by the Joint Earthquake Science Foundation of CEA(Grant No.103075 and No.104016)
文摘The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.
基金supported by a Grant-in-Aid for Scientific Researches (No. 16K12641&17H00806) from the Ministry of Education, Culture, Sports, Science, and technology of Japan
文摘Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible explanation of this can be found in the unique nature of the forest management area which is populated with various kinds of rare and endangered species.This issue has been brought to light as a result of the nomination of northern Okinawa Island in 2018 as a candidate for World Natural Heritage site.The nomination has raised public awareness to the possibility of conflicting management objectives between timber extraction and the conservation of habitat for forest-dependent wildlife species.Managing exclusively for one objective over the other may fail to meet the demand for both forest products and wildlife habitat,ultimately jeopardizing the stability of human and wildlife communities.It is therefore important to achieve a better balance between the objective of timber production and conservation of wildlife habitat.Despite the significance of this subject area,current ongoing discussions on how to effectively manage for forest resources,often lack scientific basis to make sound judgement or evaluate tradeoffs between conflicting objectives.Quantifying the effect of these forest management activities on wildlife habitat provides useful and important information needed to make forest management and policy decisions.In this study we develop a spatial timber harvest scheduling model that incorporates habitat suitability index(HSI)models for the Okinawa Rail(Gallirallus okinawae),an endangered avian species found on Okinawa,Japan.To illustrate how the proposed coupling model assembles spatial information,which ultimately aids the study of forest management effects on wildlife habitat,we apply these models to a forest area in Okinawa and conduct a simple simulation analysis.
文摘Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.
基金supported by Global Energy Interconnection Group Co.,Ltd.:Assessment of China’s carbon neutrality implementation path and simulation research on policy tool combination(SGGEIG00JYJS2200059).
文摘A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future energy system planning and resource allocation.This study focusses on long-term energy system optimization model.The important uncertain parameters in the model are analyzed and divided into policy,economic,and technical factors.This study specifically addresses the challenges related to carbon emission reduction and energy transition.It involves collecting and organizing relevant research on uncertainty analysis of long-term energy systems.Various energy system uncertainty modeling methods and their applications from the literature are summarized in this review.Finally,important uncertainty factors and uncertainty modeling methods for long-term energy system modeling are discussed,and future research directions are proposed.
文摘Scheduling is one of the most difficult issues in t he planning and operations of the aircraft services industry. In this paper, t he various scheduling problems in ground support operation of an aircraft mainte nance service company are addressed. The authors developed a set of vehicle rout ings to cover each schedule flights; the objectives pursued are the maximization of vehicle and manpower utilization and minimization of operation time. To obta in the goals, an integer-programming model with genetic algorithm is formulated . It is found that the company can produce an effective and efficient schedules to deploy the manpower and equipment resources. Simulation is used to verify the method and a MATLAB program is used to code the genetic algorithm. This model i s further illustrated by a case study in Hong Kong and the benefit elaborated. F inally, a conclusion is made to summarize the experience of this project and pro vide further improvement.
文摘In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.
文摘This paper presents an advanced methodology for optimizing a UK network load demand with various uncertainties which are related to individual driving behaviours. Without the optimized regulation for traditional power system demand, EVs (electric vehicles) would have an adverse impact on the stability of power systems. This becomes more significant for large-scale EVs plugging into the power grid. Traditional optimized methodologies are effective only for EV charging. The proposed techniques improve the system flexibility and stability through an advanced optimization model and flexible bidirectional charging/discharging control. Three scenarios with different charging and discharging power levels and various penetration levels of EVs are discussed in detail in this paper. Simulation results demonstrate that bidirectional EV power flow control has vast potentials to improve the load demand profile, with increased proportion of EVs, and charging/discharging power levels.
文摘The evaluation of urban flood-waterlogged vulnerability is very important to the safety of urban flood control. In this paper, the evaluation of consolidated index is used. Respectively, AHP and entropy method calculate the subjective and objective weight of the evaluation indicators, and combine them by game theory. So we can obtain synthetic weight based on objective and subjective weights. The evaluation of urban flood-waterlogged vulnerability as target layer, a single variable multi-objective fuzzy optimization model is established. We use the model to evaluate flood-waterlogged vulnerability of 13 prefecture-level city in Hunan, and compare it with other evaluation method. The results show that the evaluation method has certain adaptability and reliability, and it' s helpfid to the construction planning of urban flood control.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.
文摘With the advancement of digital technology,new technologies such as artificial intelligence,big data,and cloud computing have gradually permeated higher education,leading to fundamental changes in teaching and learning methods.Therefore,in the process of reforming and developing higher education,it is essential to take digital technology empowering the optimization of the education industry as a breakthrough,focusing on five key areas:the construction of smart classrooms,the digital integration of teaching resources,the development of personalized learning support systems,the reform of online-offline hybrid teaching,and the intelligentization of educational management.This paper also examines the experiences,challenges,and shortcomings of typical universities in using digital technology to improve teaching quality,optimize resource allocation,and innovate teaching management models.Finally,corresponding countermeasures and suggestions are proposed to facilitate the smooth implementation of digital transformation in higher education institutions.