In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg...In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.展开更多
The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique cha...The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials.展开更多
Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method ge...Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method.展开更多
Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation o...Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.展开更多
The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through...The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.展开更多
The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical ...The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state inf...This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.展开更多
Component sequence preservation is an intrinsic requirement in typical engineering applications, such as deployable chain-likestructures, 3D printing structures with contour-parallel toolpaths, additive manufacturing ...Component sequence preservation is an intrinsic requirement in typical engineering applications, such as deployable chain-likestructures, 3D printing structures with contour-parallel toolpaths, additive manufacturing of continuous fibre-reinforcedpolymer structures, customized stents, and soft robotics parts. This study presents a feature-driven method that preservescomponent sequences accounting for engineering requirements. The chain-of-bars design variables setting scheme is developedto realize the sequential component’s layout, which sets the current bar’s end point as the next bar’s start point. The total lengthof the printing path is constrained to reduce the consumption of material accurately. Also, the angle between adjacent bars isconstrained to avoid sharp angles at the turning point of the 3D printing path. Next, the sensitivity analysis considering theinter-dependence of substructures is performed. Several numerical examples are given to demonstrate the validity and merits ofthe proposed method in designing structures preserving component sequences.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock ma...Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on a...This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on any line search and only requires a simple step size formula to always generate a sufficient descent direction.Under certain assumptions,the proposed method is proved to possess global convergence.Finally,our method is compared with other potential methods.A large number of numerical experiments show that our method is more competitive and effective.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four repres...To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.展开更多
The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferenc...The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.展开更多
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall...In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and tra...This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.展开更多
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金funded by National Nature Science Foundation of China(92266203)National Nature Science Foundation of China(52205278)+1 种基金Key Projects of Shijiazhuang Basic Research Program(241791077A)Central Guide Local Science and Technology Development Fund Project of Hebei Province(246Z1022G).
文摘In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.
基金supported by the National Natural Science Foundation of China(Grant No.52172356)the Hunan Provincial Natural Science Foundation of China(Grant No.2022JJ10012).
文摘The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials.
基金Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2022F012)the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023010)to provide fund for conducting experiments.
文摘Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372200 and 12072242).
文摘Parameterized level-set method(PLSM)has been proposed and developed for many years,and is renowned for its efficacy in ad-dressing topology optimization challenges associated with intricate boundaries and nucleation of new holes.However,most pertinent investigations in the field rely predominantly on fixed background mesh,which is never remeshed.Consequently,the mesh element partitioned by material interface during the optimization process necessitates approximation by using artificial interpolation models to obtain its element stiffness or other properties.This paper introduces a novel approach to topology op-timization by integrating the PLSM with body-fitted adaptive mesh and Helmholtz-type filter.Primarily,combining the PLSM with body-fitted adaptive mesh enables the regeneration of mesh based on the zero level-set interface.This not only precludes the direct traversal of the material interface through the mesh element during the topology optimization process,but also improves the accuracy of calculation.Additionally,the incorporation of a Helmholtz-type partial differential equation filter,relying solely on mesh information essential for finite element discretization,serves to regulate the topological complexity and the minimum feature size of the optimized structure.Leveraging these advantages,the topology optimization program demonstrates its versa-tility by successfully addressing various design problems,encompassing the minimum mean compliance problem and minimum energy dissipation problem.Ultimately,the result of numerical example indicates that the optimized structure exhibits a dis-tinct and smooth boundary,affirming the effective control over both topological complexity and the minimum feature size of the optimized structure.
基金supported by the National Natural Science Foundation of China(Grant 12472113).
文摘The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.
基金funded by the Hanoi University of Mining and Geology(Grant No.T23-44)The research is also funded by the German Research Foundation(DFG e Project number 518862444)in collaboration with the Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number DFG.105e2022.03The third author was funded by the Postdoctoral Scholarship Program of the Vingroup Innovation Foundation(VINIF)(VINIF.2023.STS.15).
文摘The quasi-rectangular tunnel represents a novel cross-section design,intended to supersede the traditional circular and rectangular tunnel formats.Due to the limited capacity of the tunnel vault to withstand vertical loads,an interior column is often installed at the center to enhance its load-bearing capacity.This study aims to develop a hyperstatic reaction method(HRM)for the analysis of deformation and structural integrity in this specific tunnel type.The computational model is validated through comparison with the corresponding finite element method(FEM)analysis.Following comprehensive validation,an ensemble machine learning(ML)model is proposed,using numerical benchmark data,to facilitate real-time design and optimization.Subsequently,three widely used ensemble models,i.e.random forest(RF),gradient boosting decision tree(GBDT),and extreme gradient boosting(XGBoost)are compared to identify the most efficient ML model for replacing the HRM model in the design optimization process.The performance metrics,such as the coefficient of determination R2 of about 0.999 and the mean absolute percentage error(MAPE)of about 1%,indicate that XGBoost outperforms the others,exhibiting excellent agreement with the HRM analysis.Additionally,the model demonstrates high computational efficiency,with prediction times measured in seconds.Finally,the HRM-XGBoost model is integrated with the well-known particle swarm optimization(PSO)for the real-time design optimization of quasi-rectangular tunnels,both with and without the interior column.A feature importance assessment is conducted to evaluate the sensitivity of design input features,enabling the selection of the most critical features for the optimization task.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.62103169,51875380)the China Postdoctoral Science Foundation(No.2021M691313).
文摘This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results.
基金supported by the Chinese Studentship Council(Grant No.201908060224)the Young Talent Fund of Association for Science and Technology in Shaanxi,China(Grant No.20230240)+1 种基金the National Natural Science Foundation of China(Grant No.11972308)Queen Mary University of London with the PhD fee waiver.
文摘Component sequence preservation is an intrinsic requirement in typical engineering applications, such as deployable chain-likestructures, 3D printing structures with contour-parallel toolpaths, additive manufacturing of continuous fibre-reinforcedpolymer structures, customized stents, and soft robotics parts. This study presents a feature-driven method that preservescomponent sequences accounting for engineering requirements. The chain-of-bars design variables setting scheme is developedto realize the sequential component’s layout, which sets the current bar’s end point as the next bar’s start point. The total lengthof the printing path is constrained to reduce the consumption of material accurately. Also, the angle between adjacent bars isconstrained to avoid sharp angles at the turning point of the 3D printing path. Next, the sensitivity analysis considering theinter-dependence of substructures is performed. Several numerical examples are given to demonstrate the validity and merits ofthe proposed method in designing structures preserving component sequences.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金funded by the National Natural Science Foundation of China(52074298)Beijing Municipal Natural Science Foundation(8232056)+1 种基金Guizhou Province science and technology plan project([2020]3008)Liulin Energy and Environment Academician Workstation(2022XDHZ12).
文摘Directional roof cutting(DRC)is one of the key techniques in non-pillar coal mining with self-formed entries(NCMSE)mining method.Due to the inability to accurately measure the expansion coefficient of the goaf rock mass,the implementation of this technology often encounters design challenges,leading to suboptimal results and increased costs.This paper establishes a structural analysis model of the goaf working face roof,revealing the failure mechanism of DRC,and clarifies the positive role of DRC in improving the stress of the roadway surrounding rock and reducing the subsidence of the roof through numerical simulation experiments.On this basis,the paper further analyses the roadway pressure and roof settlement under different DRC design heights,and ultimately proposes an optimized design method for the DRC height.The results indicate that the implementation of DRC can significantly optimize the stress environment of the working face roadway surrounding rock.At the same time,during the application of DRC,three scenarios may arise:insufficient,reasonable,and excessive DRC height.Insufficient height will significantly reduce the effectiveness of the technology,while excessive height has little impact on the implementation effect but will greatly increase construction costs and difficulty.Engineering verification shows that the optimized DRC design method proposed in this paper reduces the peak stress of the protective coal pillar in the roadway by 27.2%and the central subsidence of the roof by 41.8%,demonstrating excellent application results.This method provides technical support for the further promotion of NCMSE mining method.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金Supported by 2023 Inner Mongolia University of Finance and Economics,General Scientific Research for Universities directly under Inner Mon‐golia,China (NCYWT23026)2024 High-quality Research Achievements Cultivation Fund Project of Inner Mongolia University of Finance and Economics,China (GZCG2479)。
文摘This paper puts forward a two-parameter family of nonlinear conjugate gradient(CG)method without line search for solving unconstrained optimization problem.The main feature of this method is that it does not rely on any line search and only requires a simple step size formula to always generate a sufficient descent direction.Under certain assumptions,the proposed method is proved to possess global convergence.Finally,our method is compared with other potential methods.A large number of numerical experiments show that our method is more competitive and effective.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
文摘To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.
基金Supported by projects of National Natural Science Foundation of China(No.42074150)National Key Research and Development Program of China(No.2023YFC3707901)Futian District Integrated Ground Collapse Monitoring and Early Warning System Construction Project(No.FTCG2023000209).
文摘The exploration of urban underground spaces is of great significance to urban planning,geological disaster prevention,resource exploration and environmental monitoring.However,due to the existing of severe interferences,conventional seismic methods cannot adapt to the complex urban environment well.Since adopting the single-node data acquisition method and taking the seismic ambient noise as the signal,the microtremor horizontal-to-vertical spectral ratio(HVSR)method can effectively avoid the strong interference problems caused by the complex urban environment,which could obtain information such as S-wave velocity and thickness of underground formations by fitting the microtremor HVSR curve.Nevertheless,HVSR curve inversion is a multi-parameter curve fitting process.And conventional inversion methods can easily converge to the local minimum,which will directly affect the reliability of the inversion results.Thus,the authors propose a HVSR inversion method based on the multimodal forest optimization algorithm,which uses the efficient clustering technique and locates the global optimum quickly.Tests on synthetic data show that the inversion results of the proposed method are consistent with the forward model.Both the adaption and stability to the abnormal layer velocity model are demonstrated.The results of the real field data are also verified by the drilling information.
基金the support of EPIC - Energy Production Innovation Center, hosted by the University of Campinas (UNICAMP) and sponsored by Equinor Brazil and FAPESP - Sao Paulo Research Foundation (2021/04878- 7 and 2017/15736-3)financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior Brasil (CAPES) - Financing Code 001
文摘In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘This study aims to optimize the inbound traffic flow on on-ramps by considering low time costs,good speed stability,and high driving safety for mixed traffic flow.The optimal inlet gap is identified in advance,and trajectory guidance for vehicles entering the gap is determined under safety constraints.Based on the initial state and sequence of vehicles entering the merging area,individual vehicle trajectories are optimized sequentially.An optimization model and method for ramp entry trajectories in mixed traffic flow are developed,incorporating on-ramp vehicle entry sequencing and ordinary vehicle trajectory prediction.Key performance indicators,including driving safety,total travel time,parking wait probability,and trajectory smoothness,are compared and analyzed to evaluate the proposed approach.