期刊文献+
共找到370,643篇文章
< 1 2 250 >
每页显示 20 50 100
Research on an Air Pollutant Data Correction Method Based on Bayesian Optimization Support Vector Machine
1
作者 Xingfu Ou Miao Zhang Wenfeng Chen 《Journal of Electronic Research and Application》 2025年第4期190-203,共14页
Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by... Miniature air quality sensors are widely used in urban grid-based monitoring due to their flexibility in deployment and low cost.However,the raw data collected by these devices often suffer from low accuracy caused by environmental interference and sensor drift,highlighting the need for effective calibration methods to improve data reliability.This study proposes a data correction method based on Bayesian Optimization Support Vector Regression(BO-SVR),which combines the nonlinear modeling capability of Support Vector Regression(SVR)with the efficient global hyperparameter search of Bayesian Optimization.By introducing cross-validation loss as the optimization objective and using Gaussian process modeling with an Expected Improvement acquisition strategy,the approach automatically determines optimal hyperparameters for accurate pollutant concentration prediction.Experiments on real-world micro-sensor datasets demonstrate that BO-SVR outperforms traditional SVR,grid search SVR,and random forest(RF)models across multiple pollutants,including PM_(2.5),PM_(10),CO,NO_(2),SO_(2),and O_(3).The proposed method achieves lower prediction residuals,higher fitting accuracy,and better generalization,offering an efficient and practical solution for enhancing the quality of micro-sensor air monitoring data. 展开更多
关键词 Air quality monitoring Data calibration Support vector regression Bayesian optimization Machine learning
在线阅读 下载PDF
Urban Vertical Greening Optimization Supported by Deep Learning and Remote Sensing Technology and Its Application in Smart Ecological Cities
2
作者 Jian Sun Peng Li 《Journal of Environmental & Earth Sciences》 2025年第7期144-170,共27页
This research systematically investigates urban three-dimensional greening layout optimization and smart ecocity construction using deep learning and remote sensing technology.An improved U-Net++ architecture combined... This research systematically investigates urban three-dimensional greening layout optimization and smart ecocity construction using deep learning and remote sensing technology.An improved U-Net++ architecture combined with multi-source remote sensing data achieved high-precision recognition of urban three-dimensional greening with 92.8% overall accuracy.Analysis of spatiotemporal evolution patterns in Shanghai,Hangzhou,and Nanjing revealed that threedimensional greening shows a development trend from demonstration to popularization,with 16.5% annual growth rate.The study quantitatively assessed ecological benefits of various three-dimensional greening types.Results indicate that modular vertical greening and intensive roof gardens yield highest ecological benefits,while climbing-type vertical greening and extensive roof gardens offer optimal benefit-cost ratios.Integration of multiple forms generates 15-22% synergistic enhancement.Compared with traditional planning,the multi-objective optimization-based layout achieved 27.5% increase in carbon sequestration,32.6% improvement in temperature regulation,35.8% enhancement in stormwater management,and 42.3% rise in biodiversity index.Three pilot projects validated that actual ecological benefits reached 90.3-102.3% of predicted values.Multi-scenario simulations indicate optimized layouts can reduce urban heat island intensity by 15.2-18.7%,increase carbon neutrality contribution to 8.6-10.2%,and decrease stormwater runoff peaks by 25.3-32.6%.The findings provide technical methods for urban three-dimensional greening optimization and smart eco-city construction,promoting sustainable urban development. 展开更多
关键词 Deep Learning Remote Sensing Image Processing Three-Dimensional Greening Layout optimization Smart Eco-City
在线阅读 下载PDF
Dynamic failure analysis and support optimization for web pillars under static and dynamic loading using catastrophe theory
3
作者 Juyu Jiang Yulong Zhang +2 位作者 Laigui Wang Changbo Du Jun Xu 《International Journal of Mining Science and Technology》 2025年第9期1591-1602,共12页
Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the ... Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology. 展开更多
关键词 Non-uniform loading Highwall mining Web pillar Dynamic failure criterion Parameter optimization design
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
4
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
5
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
6
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
7
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
Tackling Challenges and Exploring Opportunities in Cathode Binder Innovation
8
作者 Tingrun Lai Li Wang +3 位作者 Zhibei Liu Adnan Murad Bhayo Yude Wang Xiangming He 《Nano-Micro Letters》 2026年第1期198-228,共31页
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex... Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs. 展开更多
关键词 Cathode Binder Lithium-Ion Battery Performance optimization Sustainable Development Innovative Design
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
9
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
10
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
11
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
12
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
13
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
14
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
15
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
16
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
基于改进PPO算法的无人机航路规划
17
作者 姜智中 贺建良 《电光与控制》 北大核心 2026年第1期24-29,77,共7页
为提升无人机执行的可靠性,需要根据地形及敌方威胁规划出光滑连续的航路,并确保无人机在沿航路飞行过程中满足飞行性能约束。针对飞行性能约束下无人机连续航路规划问题,基于深度强化学习方法建立规划模型,在标准近端策略优化(PPO)算... 为提升无人机执行的可靠性,需要根据地形及敌方威胁规划出光滑连续的航路,并确保无人机在沿航路飞行过程中满足飞行性能约束。针对飞行性能约束下无人机连续航路规划问题,基于深度强化学习方法建立规划模型,在标准近端策略优化(PPO)算法的基础上引入门控循环单元(GRU)进行改进,实现了满足约束条件和平滑要求的无人机航路规划。通过仿真验证,证明了所提算法的有效性。 展开更多
关键词 深度强化学习 航路规划 近端策略优化 门控循环单元
在线阅读 下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
18
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm Support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
基于改进PPO算法的钻锚机器人机械臂路径规划
19
作者 张旭辉 田琛辉 +4 位作者 雷孟宇 杨文娟 田江伟 董征 田思昊 《煤炭学报》 北大核心 2025年第12期5420-5433,共14页
煤矿巷道支护装备的自动化与智能化水平较低,制约了煤矿巷道的成形效率,是造成“采掘失衡”的关键原因。为解决煤矿巷道支护装备自动化程度低、支护效率差的问题,针对一种集成悬臂式掘进机和多自由度机械臂的钻锚机器人,提出了一种基于... 煤矿巷道支护装备的自动化与智能化水平较低,制约了煤矿巷道的成形效率,是造成“采掘失衡”的关键原因。为解决煤矿巷道支护装备自动化程度低、支护效率差的问题,针对一种集成悬臂式掘进机和多自由度机械臂的钻锚机器人,提出了一种基于深度强化学习的钻锚机器人机械臂路径规划方法。在虚拟环境中构建煤矿巷道环境,并建立机械臂与机身、煤壁以及支护钢带的碰撞检测模型,使用层次包围盒法在虚拟环境进行碰撞检测,形成煤矿巷道边界受限情况下的避障策略。在近端策略优化(Proximal Policy Optimization,PPO)算法的基础上结合多方面因素提出改进。考虑到多自由度机械臂状态空间输入长度不固定的情况,引入长短记忆神经网络(Long Short Term Memory,LSTM)的环境状态输入处理方法,可以提升算法对环境的适应能力。并且在奖惩稀疏的情况下引入了好奇心机制(Intrinsic Curiosity Module,ICM),通过给予内在奖励鼓励智能体更大程度地探索环境。基于奖惩机制建立智能体,根据钻锚机器人的运动特性定义其状态空间与动作空间,在同一场景下分别使用2种算法对智能体进行训练,综合奖励值、回合步数、Actor网络损失值、Critic网络损失值等指标进行对比分析,最后经过仿真消融实验测试对比。实验结果表明,在原始PPO算法不能完成任务的情况下,改进后的算法路径长度比同样能完成任务的PPO-ICM算法缩短了3.98%,所用时间缩短了25.6%。为进一步验证改进后算法的鲁棒性,设计多组实验,改进后的PPO算法均完成路径规划任务,路径终点与目标位置的距离误差在3.88 cm之内,锚杆与竖直方向夹角误差在3°以内,能够有效完成路径规划任务,提升煤矿巷道支护系统的自动化程度。结果验证了所提方法在煤矿井下巷道支护时锚孔位置多变的情况下钻锚机器人多自由度机械臂在路径规划的可行性与有效性。 展开更多
关键词 巷道支护 钻锚机器人 碰撞检测 路径规划 改进ppo算法
在线阅读 下载PDF
基于改进PPO算法的机械臂动态路径规划 被引量:4
20
作者 万宇航 朱子璐 +3 位作者 钟春富 刘永奎 林廷宇 张霖 《系统仿真学报》 北大核心 2025年第6期1462-1473,共12页
针对非结构化环境下机械臂路径规划面临的环境不确定性因素增多、建模难度大等问题,提出了一种基于改进近端策略优化(PPO)算法的机械臂动态路径规划方法。针对由于动态环境中障碍物数量变化而导致的状态空间输入长度不固定的问题,提出... 针对非结构化环境下机械臂路径规划面临的环境不确定性因素增多、建模难度大等问题,提出了一种基于改进近端策略优化(PPO)算法的机械臂动态路径规划方法。针对由于动态环境中障碍物数量变化而导致的状态空间输入长度不固定的问题,提出了基于LSTM网络的环境状态输入处理方法,并对PPO算法的网络结构进行了改进;基于人工势场法设计了奖励函数,并建立机械臂碰撞检测模型。实验结果表明:改进算法能够适应场景中障碍物数量和位置的变化,具有更快的收敛速度和稳定性。 展开更多
关键词 动态路径规划 改进ppo算法 LSTM网络 人工势场法 ML-Agents
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部