期刊文献+
共找到368,924篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization of microgrid scheduling based on multi-strategy improved MOPSO algorithm
1
作者 Yang Xue Shiwei Liang +1 位作者 Fengwei Qian Jinyi Tang 《Global Energy Interconnection》 2025年第6期959-968,共10页
A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protect... A multi-strategy Improved Multi-Objective Particle Swarm Algorithm(IMOPSO)method for microgrid operation optimization is proposed for the coordinated optimization problem of microgrid economy and environmental protection.A grid-connected microgrid model containing photovoltaic cells,wind power,micro gas turbine,diesel generator,and storage battery is constructed with the aim of optimizing the multi-objective grid-connected microgrid economic optimization problem with minimum power generation cost and environmental management cost.Based on the optimization of the standard multi-objective particle swarm optimization algorithm,four strategies are introduced to improve the algorithm,namely,Logistic chaotic mapping,adaptive inertia weight adjustment,adaptive meshing using congestion distance mechanism,and fuzzy comprehensive evaluation.The proposed IMOPSO is applied to the microgrid optimization problem and the performance is compared with other unimproved multi-objective gray wolf algorithm(MOGWO),multi-objective ant colony algorithm(MOACO),and MOPSO algorithms,and the total cost of the proposed method is reduced by 3.15%,8.34%,and 10.27%,respectively.The simulation results show that IMOPSO can more effectively reduce the cost and optimize power distribution,and verify the effectiveness of the proposed method. 展开更多
关键词 MICROGRID Multi-objective particle swarm System economic operation Optimal scheduling
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
2
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
融合敏感度-机理的MOPSO铣削工艺参数增效优化
3
作者 黄晓燕 赵家康 +2 位作者 马俊燕 廖小平 鲁娟 《制造技术与机床》 北大核心 2026年第1期114-121,153,共9页
现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm... 现有加工过程的多目标优化方法未能有效利用工艺参数的敏感度与机理信息,易陷入局部最优且解集多样性不足。为此,文章提出基于敏感度-机理信息驱动的多目标粒子群优化(sensitivity-mechanism integrated multi-objective particle swarm optimization, SMG-MOPSO)算法回归模型与经验公式,以构建表面粗糙度Ra、切削力F_(c)和材料去除率(material removal rate,MRR)预测模型;通过敏感度函数、主效应与交互作用分析,揭示工艺参数对优化目标的影响规律;在此基础上,针对MOPSO设计三项机制,即基于敏感度函数与机理趋势的自适应步长调节、融合敏感度导向与机理修正的速度更新、引入机理一致性的解集维护,以增强解集效果。铣削试验验证表明,所提方法在满足Ra与F_(c)约束的前提下,MRR提高24.40%,验证了该方法的有效性及工程应用潜力。 展开更多
关键词 铣削加工 粒子群优化 自适应机制 机理信息 敏感度函数
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:9
4
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(mopso) develop ment task simulation.
在线阅读 下载PDF
基于响应面法与MOPSO算法的水轮机叶轮优化设计 被引量:1
5
作者 刘铭滨 成思源 +1 位作者 李永健 杨雪荣 《中国农村水利水电》 北大核心 2025年第2期160-165,172,共7页
为进一步提高阻力型水轮机的效率并降低其对管道液体输送能力的影响,通过单因素试验法分析了叶轮参数对其性能的影响,筛选出了四个关键参数及其取值范围。接着采用响应面法设计试验方案,利用最小二乘法拟合关键参数与效率和水头损失的... 为进一步提高阻力型水轮机的效率并降低其对管道液体输送能力的影响,通过单因素试验法分析了叶轮参数对其性能的影响,筛选出了四个关键参数及其取值范围。接着采用响应面法设计试验方案,利用最小二乘法拟合关键参数与效率和水头损失的函数关系,得到了回归模型。最后运用MOPSO算法对回归模型进行寻优,获得了叶轮最佳参数组合。结果表明,优化后的阻力型水轮机效率平均提高4.053%,水头损失平均降低0.679%。 展开更多
关键词 阻力型水轮机 多目标优化 响应面法 mopso算法 优化设计
在线阅读 下载PDF
基于改进小生境MOPSO算法的主动配电网多目标灵活优化策略
6
作者 马成廉 李浩 +4 位作者 刘翔宇 赵宇 李闯 杨茂 孙黎 《电网与清洁能源》 北大核心 2025年第11期64-73,共10页
为减小可再生能源大规模接入对主动配电网的影响,实现主动配电网经济、安全和低碳性能的优化,提出一种基于改进小生境多目标粒子群(multiple objective particle swarm optimization,MOPSO)算法的主动配电网多目标灵活优化策略。在传统M... 为减小可再生能源大规模接入对主动配电网的影响,实现主动配电网经济、安全和低碳性能的优化,提出一种基于改进小生境多目标粒子群(multiple objective particle swarm optimization,MOPSO)算法的主动配电网多目标灵活优化策略。在传统MOPSO算法的基础上,应用小生境技术,通过改进的循环拥挤排序策略和算法因子优化,构建灵活性资源模型。以东北某实际区域主动配电网为对象进行仿真验证,从综合成本、电压偏差、碳排放量和网损等角度综合评价运行方案成效,并通过碳流分析评估灵活优化效果,最后通过不同算法优化结果对比证明该算法的优越性。实验结果表明,所提的灵活优化策略可有效提升主动配电网的经济、安全和低碳性能。灵活性资源加入后,配电网综合成本降低4.71%,电压偏差累计值减少46.36%,碳排放量降低24.5%,网损下降约57.14%,节点电压幅值降低约4.5%。 展开更多
关键词 可再生能源 灵活性资源 主动配电网 小生境mopso算法 碳排放流动
在线阅读 下载PDF
基于改进MOPSO算法的钢铁行业多能源介质调配
7
作者 刘悦成 吴定会 +1 位作者 陆申鑫 汪晶 《控制工程》 北大核心 2025年第9期1556-1562,共7页
针对钢铁企业多介质能源调配模型存在变量较多以及粒子群优化算法存在易陷入局部最优的特点,提出了一种改进的多目标粒子群优化(multiple objective particle swarm optimization,MOPSO)算法,用于实现多能源介质的调配优化。首先,基于... 针对钢铁企业多介质能源调配模型存在变量较多以及粒子群优化算法存在易陷入局部最优的特点,提出了一种改进的多目标粒子群优化(multiple objective particle swarm optimization,MOPSO)算法,用于实现多能源介质的调配优化。首先,基于各设备实时运行效率的变化,以最小化成本和能耗为目标函数,建立针对煤气、蒸汽、电力3种介质的能源优化调配模型,该模型分别考虑了锅炉和汽轮机的波动惩罚成本;然后,在MOPSO算法的基础上,引入自适应惯性权重策略和高斯变异策略,以提高算法的收敛性和初始种群的多样性;最后,利用宝钢的生产数据进行了实例分析,实验结果表明,改进的MOPSO算法能够有效地实现钢铁能源计划的优化与能源调配,能源运行的成本和能耗分别降低了0.8%和0.5%。 展开更多
关键词 mopso算法 能源计划 自适应惯性权重 高斯变异
原文传递
基于MOPSO算法的自感式棒位探测器端部补偿多目标优化设计
8
作者 张艺璇 唐健凯 +4 位作者 罗凌雁 吴昊 唐源 王益明 徐奇伟 《核动力工程》 北大核心 2025年第1期238-246,共9页
自感式棒位探测器利用探测线圈电感随驱动杆位移的变化特性实现连续棒位测量,但实际探测线圈端部磁场的非均匀分布致使探测器端部的输出信号表现为非线性,降低了端部位置的测量精度。为此,本文提出一种在探测线圈两端绕制阶梯型补偿线... 自感式棒位探测器利用探测线圈电感随驱动杆位移的变化特性实现连续棒位测量,但实际探测线圈端部磁场的非均匀分布致使探测器端部的输出信号表现为非线性,降低了端部位置的测量精度。为此,本文提出一种在探测线圈两端绕制阶梯型补偿线圈的多目标优化设计方法:(1)建立端部补偿线圈电感数学模型;(2)采用多目标粒子群优化(MOPSO)算法对补偿线圈结构进行多目标优化;(3)利用熵权法和模糊综合评价法对多个优化目标客观赋权并进行综合评价,选取一组折中最优设计方案,从而快速有效地确定补偿线圈的最优结构参数。通过有限元仿真对比补偿前后结果,发现经过端部补偿后,不仅电感灵敏度提高了28.6%,最大线性拟合误差也降低了45.8%;最后,进行样机实验,结果显示端部补偿后的探测线圈电感灵敏度为0.18 mH/10 mm,最大线性拟合误差小于0.18 mH,可实现10 mm的测量精度,验证了端部补偿线圈多目标优化设计方案的有效性。本文为其在模块化小型反应堆中的应用提供了优化设计理论基础。 展开更多
关键词 反应堆 自感式棒位探测器 端部补偿 多目标粒子群优化(mopso) 多目标优化
原文传递
Optimization of Multi-Project Multi-Site Location Based on MOPSOs
9
作者 ZHANG Yong GONG Dun-wei ZHOU Yong 《Journal of China University of Mining and Technology》 EI 2006年第2期167-170,共4页
Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to it... Multi-project multi-site location problems are multi-objective combinational optimization ones with discrete variables which are hard to solve. To do so, the case of particle swarm optimization is considered due to its useful char- acteristics such as easy implantation, simple parameter settings and fast convergence. First these problems are trans- formed into ones with continuous variables by defining an equivalent probability matrix in this paper, then multi-objective particle swarm optimization based on the minimal particle angle is used to solve them. Methods such as continuation of discrete variables, update of particles for matrix variables, normalization of particle position and evalua- tion of particle fitness are presented. Finally the efficiency of the proposed method is validated by comparing it with other methods on an eight-project-ten-site location problem. 展开更多
关键词 multi-project location problems multi-objective optimization particle swarm optimization
在线阅读 下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
10
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
11
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
基于改进MOPSO和多目标的SCARA并联机器人的食品分拣轨迹优化 被引量:1
12
作者 金光 李若琪 郑强仁 《食品与机械》 北大核心 2025年第8期85-92,共8页
[目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次... [目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次B样条和多目标模型的SCARA高速并联机器人食品分拣轨迹优化方法。通过始末路径引入虚拟路径点优化非均匀五次B样条插值方法构建SCARA高速并联机器人食品分拣轨迹,以运行冲击和运行能耗综合最优为多目标轨迹优化模型,通过外部档案、全局最优粒子、惯性权重优化的多目标粒子群算法求解模型,完成SCARA高速并联机器人轨迹优化。通过试验对所提轨迹优化方法的运行冲击和能耗进行分析。[结果]所提轨迹优化方法可有效实现SCARA高速并联机器人食品分拣过程中运行冲击与能耗的综合优化,轨迹平滑性与算法求解性能均得到显著提升。与优化前相比,运行冲击和运行能耗降低50%以上,不同分拣速度下的误差未超过1 mm。[结论]通过结合改进非均匀五次B样条与多目标模型的轨迹优化方法,可实现机器人在食品分拣过程中运行冲击和能耗的综合最优。 展开更多
关键词 高速并联机器人 食品分拣 轨迹优化 五次B样条 多目标粒子群算法
在线阅读 下载PDF
Optimization of CNC Turning Machining Parameters Based on Bp-DWMOPSO Algorithm
13
作者 Jiang Li Jiutao Zhao +3 位作者 Qinhui Liu Laizheng Zhu Jinyi Guo Weijiu Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第10期223-244,共22页
Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImpr... Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImproved Multi-Objective Particle Swarm(Bp-DWMOPSO).Firstly,this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm.Secondly,the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established.Finally,the Bp-DWMOPSO algorithm is designed based on the established models.In order to verify the effectiveness of the algorithm,this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control(CNC)turning machining case and uses the Bp-DWMOPSO algorithm for optimization.The experimental results show that the Cutting speed is 69.4 mm/min,the Feed speed is 0.05 mm/r,and the Depth of cut is 0.5 mm.The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality.This method provides a new idea for the optimization of turning machining parameters. 展开更多
关键词 Machining parameters Bp neural network Multiple Objective Particle Swarm optimization Bp-DWmopso algorithm
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
14
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
基于MOPSO和布局特征指标的钻机界面优化研究
15
作者 陈晓鹂 刘润余 +1 位作者 文国军 郝国成 《机械设计》 北大核心 2025年第2期166-172,共7页
为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建... 为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建数学模型;采用改进后的多目标的粒子群算法求解得到综合最优平衡解;将最优平衡解对应的坐标应用至界面并进行布局改进;通过SUS评估布局优化的有效性。以某型号钻机操纵界面为例进行试验,结果表明,优化后的界面可有效提升用户满意度。文中所提出的方法可作为一种从用户体验角度出发的复杂操控界面布局优化方法。 展开更多
关键词 人机界面 布局优化 多目标粒子群算法 钻机界面 布局特征衡量指标
原文传递
基于响应面法和MOPSO算法的2195-T6铝锂合金GTN损伤模型
16
作者 贾向东 罗展 +2 位作者 镐昆明 张洪耀 陆伟 《材料导报》 北大核心 2025年第23期211-218,共8页
2195铝锂合金凭借其优良的机械性能和减重优势,成为航天器和运载火箭等航空航天装备关键部件的首选材料,不同加载条件下2195铝锂合金损伤演化是影响其成形性能的关键。作为细观损伤模型中应用极为广泛的模型之一,GTN模型能够准确预测韧... 2195铝锂合金凭借其优良的机械性能和减重优势,成为航天器和运载火箭等航空航天装备关键部件的首选材料,不同加载条件下2195铝锂合金损伤演化是影响其成形性能的关键。作为细观损伤模型中应用极为广泛的模型之一,GTN模型能够准确预测韧性金属的损伤演化与断裂,而实现这一目标的关键是GTN模型参数的准确标定。以微观表征和宏观性能测试为基础,通过数值仿真与试验相结合,建立了损伤参数的响应面模型,揭示了损伤参数对2195铝锂合金力学性能的影响机制。将响应面法与MOPSO算法相结合,确定了2195-T6铝锂合金板材的GTN模型参数。研究结果表明,将响应面法与MOPSO优化算法结合的反向标定法,可以实现GTN模型的准确标定。 展开更多
关键词 铝锂合金 损伤模型 GTN模型 响应面法 mopso算法
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems 被引量:1
17
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
基于GWO-XGBoost和MOPSO算法的脱硫系统运行优化
18
作者 张婉 钱玉良 +1 位作者 金鑫 彭道刚 《化学工程》 北大核心 2025年第9期77-82,共6页
燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化... 燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化方法。利用GWO对XGBoost算法的超参数进行优化,进一步提升XGBoost模型的预测性能,建立基于GWO-XGBoost算法的脱硫效率预测模型。以脱硫成本最低和脱硫效率最高为优化目标,采用MOPSO算法建立优化模型并得到最佳运行参数,为循环浆液泵和氧化风机的运行提供指导。以某典型工况为例,在保证出口SO 2排放浓度达标的情况下,使用优化的运行策略,运行成本可降低385.23元/h。结果表明:该脱硫效率预测模型预测效果较佳,该优化模型能够对燃煤电厂脱硫过程提供科学的运行指导,节省脱硫过程中的物耗和关键设备的能耗,提高脱硫系统运行操作方案的可靠性和经济性。 展开更多
关键词 湿法脱硫系统 运行优化 氧化风机 循环浆液泵 GWO-XGBoost算法 mopso算法
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
19
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
20
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部