期刊文献+
共找到364,777篇文章
< 1 2 250 >
每页显示 20 50 100
湖北省土地利用配置与减碳增效优化--基于MOP与GeoSOS-FLUS模型分析 被引量:1
1
作者 赵钧一 杜昌会 武静 《中国城市林业》 2025年第3期117-125,共9页
【目的】结合生态文明、乡村振兴和城乡融合等可持续发展目标,寻求经济发展与生态保护平衡的土地利用结构,以推动经济社会的土地效能优化。【方法】以湖北省为研究区域,分析2000—2020年期间土地利用的时空变化特征,运用灰色预测模型预... 【目的】结合生态文明、乡村振兴和城乡融合等可持续发展目标,寻求经济发展与生态保护平衡的土地利用结构,以推动经济社会的土地效能优化。【方法】以湖北省为研究区域,分析2000—2020年期间土地利用的时空变化特征,运用灰色预测模型预测2030和2060年自然演变情境下的土地利用;计算湖北省2000—2020年的经济效益系数,并通过灰色预测得到2030与2060年的经济效益系数;结合多目标规划模型,平衡土地生态与经济效益,耦合GeoSOS-FLUS模型模拟土地利用布局,并采用标准差椭圆与重心迁移模型进行分析。【结果】经济优先情景下主要表现为耕地和草地向城镇建设用地的转化,建设用地面积达到历史最高;生态效益优先情境下林地和草地面积增加,耕地和建设用地受到限制。通过多目标规划模型平衡经济效益和生态效益,结果表现为耕地向建设用地和林地的转化,土地结构趋于稳定。【结论】湖北省有可能在未来实现生态与经济效益的和谐共生,经济和生态效益两者兼具情景在丰富生态过程和格局结构上具有一定的优越性,可为湖北省国土空间资源配置、“三生”空间优化等决策提供一定的参考和借鉴。 展开更多
关键词 土地利用配置 mop模型 GeoSOS-FLUS模型 灰色预测
在线阅读 下载PDF
基于MOP-PLUS模型的兰西城市群“三生”空间冲突测度及多情景模拟 被引量:3
2
作者 王晓兰 谢保鹏 +2 位作者 裴婷婷 陈英 申杨 《水土保持研究》 北大核心 2025年第3期363-372,共10页
[目的]提出缓解“三生”空间冲突的发展策略,为区域国土空间格局优化提供重要指引。[方法]耦合MOPPLUS模型模拟兰西城市群“三生”空间格局,并构建空间冲突指数模型测算空间冲突水平。[结果](1)2000—2020年兰西城市群以生态空间为主,... [目的]提出缓解“三生”空间冲突的发展策略,为区域国土空间格局优化提供重要指引。[方法]耦合MOPPLUS模型模拟兰西城市群“三生”空间格局,并构建空间冲突指数模型测算空间冲突水平。[结果](1)2000—2020年兰西城市群以生态空间为主,生产空间次之,生活空间最少。生活空间显著扩张,生产与生态空间缩减;空间冲突以中等以上为主,总体呈增强趋势,冲突单元有布局的延续性和明显的地域集中性。(2)不同情景下“三生”空间模拟结果各异。自然发展情景下生活空间增加最多,生产发展情景下生产空间增加最多,生态建设和协同发展情景下生态空间减少趋势得到抑制。(3)不同情景下“三生”空间冲突平均水平由高到低依次为自然发展、生产发展、协同发展、生态建设情景。[结论]协同发展情景下的“三生”空间结构能够兼顾生态效益和经济效益的双重目标,且保持较低的冲突水平,有助于区域空间可持续发展。 展开更多
关键词 “三生”空间 空间冲突 mop模型 PLUS模型 兰西城市群
在线阅读 下载PDF
基于改进MOPSO和多目标的SCARA并联机器人的食品分拣轨迹优化 被引量:1
3
作者 金光 李若琪 郑强仁 《食品与机械》 北大核心 2025年第8期85-92,共8页
[目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次... [目的]针对SCARA高速并联机器人在食品分拣过程中运行冲击与能耗难以兼顾的问题,通过轨迹优化方法提升其综合性能,满足食品分拣场景对平稳、低耗的实际需求。[方法]在对整个食品分拣系统进行分析的基础上,提出了一种结合改进非均匀五次B样条和多目标模型的SCARA高速并联机器人食品分拣轨迹优化方法。通过始末路径引入虚拟路径点优化非均匀五次B样条插值方法构建SCARA高速并联机器人食品分拣轨迹,以运行冲击和运行能耗综合最优为多目标轨迹优化模型,通过外部档案、全局最优粒子、惯性权重优化的多目标粒子群算法求解模型,完成SCARA高速并联机器人轨迹优化。通过试验对所提轨迹优化方法的运行冲击和能耗进行分析。[结果]所提轨迹优化方法可有效实现SCARA高速并联机器人食品分拣过程中运行冲击与能耗的综合优化,轨迹平滑性与算法求解性能均得到显著提升。与优化前相比,运行冲击和运行能耗降低50%以上,不同分拣速度下的误差未超过1 mm。[结论]通过结合改进非均匀五次B样条与多目标模型的轨迹优化方法,可实现机器人在食品分拣过程中运行冲击和能耗的综合最优。 展开更多
关键词 高速并联机器人 食品分拣 轨迹优化 五次B样条 多目标粒子群算法
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:1
4
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
5
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
基于MOPSO和布局特征指标的钻机界面优化研究
6
作者 陈晓鹂 刘润余 +1 位作者 文国军 郝国成 《机械设计》 北大核心 2025年第2期166-172,共7页
为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建... 为提升地质操作钻机的用户满意度,提出基于界面布局特征衡量指标构建的数学模型,并应用于多目标的粒子群算法求解,从而获取更合理的钻机界面布局。对钻机界面进行拓扑化并建立坐标系;基于衡量指标的计算对界面内元素进行范围约束并构建数学模型;采用改进后的多目标的粒子群算法求解得到综合最优平衡解;将最优平衡解对应的坐标应用至界面并进行布局改进;通过SUS评估布局优化的有效性。以某型号钻机操纵界面为例进行试验,结果表明,优化后的界面可有效提升用户满意度。文中所提出的方法可作为一种从用户体验角度出发的复杂操控界面布局优化方法。 展开更多
关键词 人机界面 布局优化 多目标粒子群算法 钻机界面 布局特征衡量指标
原文传递
铈和钛氧化物改性MoP催化剂对CO_(2)加氢反应的影响研究
7
作者 王洪宁 盛强 +1 位作者 李翔 尚森森 《现代化工》 北大核心 2025年第2期90-96,102,共8页
采用共沉淀法制备了MoP以及铈和钛氧化物改性的MoP催化剂前驱体(分别记作Ce-MoP和Ti-MoP),并用程序升温还原的方法制备了相应的催化剂。利用XRD、TEM、XPS和H2程序升温脱附对催化剂进行了表征,结果表明,在Ce-MoP和Ti-MoP催化剂中,铈和... 采用共沉淀法制备了MoP以及铈和钛氧化物改性的MoP催化剂前驱体(分别记作Ce-MoP和Ti-MoP),并用程序升温还原的方法制备了相应的催化剂。利用XRD、TEM、XPS和H2程序升温脱附对催化剂进行了表征,结果表明,在Ce-MoP和Ti-MoP催化剂中,铈和钛分别以Ce_(2)O_(3)和金红石相TiO_(2)形式存在。铈和钛氧化物的引入对MoP颗粒形貌和尺寸以及表面组成影响不大,但是降低了MoP催化剂的结晶度,同时增加了MoP表面电子密度,促进了氢在MoP上的吸附。在MoP催化剂上,低温下MoP表现出很高的甲醇选择性;高温下还会发生逆水煤气变换(RWGS)反应和甲烷化反应。铈和钛氧化物助剂主要提高了MoP催化剂在高温下的RWGS和CO_(2)甲烷化反应活性,但抑制了CO_(2)加氢生成甲醇的反应。 展开更多
关键词 CO_(2)加氢 mop 铈氧化物 钛氧化物 高压程序升温反应
原文传递
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
8
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
9
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
10
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
11
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 Multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
Enhanced Lead and Zinc Removal via Prosopis Cineraria Leaves Powder: A Study on Isotherms and RSM Optimization 被引量:1
12
作者 Rakesh Namdeti Gaddala Babu Rao +7 位作者 Nageswara Rao Lakkimsetty Noor Mohammed Said Qahoor Naveen Prasad B.S Uma Reddy Meka Prema.P.M Doaa Salim Musallam Samhan Al-Kathiri Muayad Abdullah Ahmed Qatan Hafidh Ahmed Salim Ba Alawi 《Journal of Environmental & Earth Sciences》 2025年第1期292-305,共14页
This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Pro... This study investigates the potential of Prosopis cineraria Leaves Powder(PCLP)as a biosorbent for removing lead(Pb)and zinc(Zn)from aqueous solutions,optimizing the process using Response Surface Methodology(RSM).Prosopis cineraria,commonly known as Khejri,is a drought-resistant tree with significant promise in environmental applications.The research employed a Central Composite Design(CCD)to examine the independent and combined effects of key process variables,including initial metal ion concentration,contact time,pH,and PCLP dosage.RSM was used to develop mathematical models that explain the relationship between these factors and the efficiency of metal removal,allowing the determination of optimal operating conditions.The experimental results indicated that the Langmuir isotherm model was the most appropriate for describing the biosorption of both metals,suggesting favorable adsorption characteristics.Additionally,the D-R isotherm confirmed that chemisorption was the primary mechanism involved in the biosorption process.For lead removal,the optimal conditions were found to be 312.23 K temperature,pH 4.72,58.5 mg L-1 initial concentration,and 0.27 g biosorbent dosage,achieving an 83.77%removal efficiency.For zinc,the optimal conditions were 312.4 K,pH 5.86,53.07 mg L-1 initial concentration,and the same biosorbent dosage,resulting in a 75.86%removal efficiency.These findings highlight PCLP’s potential as an effective,eco-friendly biosorbent for sustainable heavy metal removal in water treatment. 展开更多
关键词 Prosopis Cineraria LEAD ZINC Isotherms optimization
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
13
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization 被引量:1
14
作者 Yi Zheng Hao-Ran Zhang +5 位作者 Xiao-Wei Li You-Ran Zhao Zhao-Song Li Ye-Hao Hou Chao Liu Qiong-Hua Wang 《Opto-Electronic Advances》 2025年第6期4-15,共12页
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution... Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest. 展开更多
关键词 compound-eye camera ZOOM high resolution collaborative optimization
在线阅读 下载PDF
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:1
15
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
16
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
17
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection Power optimization Throughput maximization
在线阅读 下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
18
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search optimization machine learning
在线阅读 下载PDF
Buoyancy characteristic analysis and optimization of precast concrete slab track during casting process of self-compacting concrete 被引量:1
19
作者 Pengsong Wang Tao Xin +2 位作者 Peng Chen Sen Wang Di Cheng 《Railway Sciences》 2025年第2期159-173,共15页
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec... Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process. 展开更多
关键词 Casting process Buoyancy characteristics Precast concrete slab track SIMULATION Field test optimization
在线阅读 下载PDF
Optimization method of heat transfer architecture for aircraft fuel thermal management systems 被引量:1
20
作者 Jiangtao XU Haotian TAN +3 位作者 Jitao WU Jiayi HAN Sirong SU Hongqing LYU 《Chinese Journal of Aeronautics》 2025年第8期300-312,共13页
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ... Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture. 展开更多
关键词 Fuel thermal management systems Architecture optimization Graph theory Fuel heat sink Fuel distribution
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部