The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through...The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in...A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude...The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment from a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.展开更多
In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence...In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.展开更多
Multi-Objective Optimization (MOO) techniques often achieve the combination of both maximization and minimization objectives. The study suggests scalarizing the multi-objective functions simpler using duality. An exam...Multi-Objective Optimization (MOO) techniques often achieve the combination of both maximization and minimization objectives. The study suggests scalarizing the multi-objective functions simpler using duality. An example of four objective functions has been solved using duality with satisfactory results.展开更多
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compa...At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.展开更多
A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dyn...A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.展开更多
This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method fo...This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
In this paper, a smoothing QP-free infeasible method is proposed for nonlinear inequality constrained optimization problems. This iterative method is based on the solution of nonlinear equations which is obtained by t...In this paper, a smoothing QP-free infeasible method is proposed for nonlinear inequality constrained optimization problems. This iterative method is based on the solution of nonlinear equations which is obtained by the multipliers and the smoothing FisheroBurmeister function for the KKT first-order optimality conditions. Comparing with other QP-free methods, this method does not request the strict feasibility of iteration. In particular, this method is implementable and globally convergent without assuming the strict complementarity condition and the isolatedness of accumulation points. ~rthermore, the gradients of active constraints are not requested to be linearly independent. Preliminary numerical results indicate that this smoothing QP-free infeasible method is quite promising.展开更多
Laser vision correction is a rapidly growing field for correcting nearsightedness, farsightedness as well as astigmatism with dominating laser-assisted in situ keratomileusis (LASIK) procedures. While the technique wo...Laser vision correction is a rapidly growing field for correcting nearsightedness, farsightedness as well as astigmatism with dominating laser-assisted in situ keratomileusis (LASIK) procedures. While the technique works well for correcting spherocylindrical aberrations, it does not fully correct high order aberrations (HOAs), in particular spherical aberration (SA), due to unexpected induction of HOAs post-surgery. Corneal epithelial remodeling was proposed as one source to account for such HOA induction process. This work proposes a dual-scale linear filtering kernel to model such a process. Several retrospective clinical data sets were used as training data sets to construct the model, with a downhill simplex algorithm to optimize the two free parameters of the kernel. The performance of the optimized kernel was testedon new clinical data sets that were not previously used for the optimization.展开更多
In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional d...In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional derivatives. The result extends the corresponding result of [D. Bednarik and K. Pastor, Math. Program. Ser. A, 113(2008), 283-298] to constrained optimization problems.展开更多
In this article,we use the robust optimization approach(also called the worst-case approach)for findingε-efficient solutions of the robust multiobjective optimization problem defined as a robust(worst-case)counterpar...In this article,we use the robust optimization approach(also called the worst-case approach)for findingε-efficient solutions of the robust multiobjective optimization problem defined as a robust(worst-case)counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions.Namely,we establish both necessary and sufficient optimality conditions for a feasible solution to be anε-efficient solution(an approximate efficient solution)of the considered robust multiobjective optimization problem.We also use a scalarizing method in proving these optimality conditions.展开更多
We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization ...We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization problem, and discuss the convergence of the algorithm under mild conditions.展开更多
Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new ...Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.展开更多
In this paper we consider the transmission of stored video from a server to a client for medical applications such as, Telemonitoring, to optimize medical quality of service (m-QoS) and to examine how the client buffe...In this paper we consider the transmission of stored video from a server to a client for medical applications such as, Telemonitoring, to optimize medical quality of service (m-QoS) and to examine how the client buffer space can be used efficiently and effectively towards reducing the rate variability of the compressed variable bit rate (VBR) video. Three basic results are presented. First, we show how to obtain the greatest possible reduction in rate variability when sending stored video to client with a given buffer size. Second, how to reduce high peak data rate of compressed VBR video when a patient is moving/walking very fast in hospital. Third, we evaluate the impact of optimal smoothing algorithm on the network parameters such as, peak-to-mean ratio, standard deviation, delay, jitter, average delay and average jitter to optimize the m-QoS. To resolve these all problems we used optimal smoothing algorithm and show its performance over a set of long MPEG-4 encoded video traces. Simulation results show that m-QoS is optimized by minimizing network metrics.展开更多
Mathematical statement of elastodynamic contact problem for cracked body with considering unilateral restrictions and friction of the crack faces is done in classical and weak forms. Different variational formulations...Mathematical statement of elastodynamic contact problem for cracked body with considering unilateral restrictions and friction of the crack faces is done in classical and weak forms. Different variational formulations of unilateral contact problems with friction based on boundary variational principle are considered. Nonsmooth optimization algorithms of Udzawa’s type for solution of unilateral contact problem with friction have been developed. Convergence of the proposed algorithms has been studied numerically.展开更多
基金supported by the National Natural Science Foundation of China(Grant 12472113).
文摘The traditional topology optimization method of continuum structure generally uses quadrilateral elements as the basic mesh.This approach often leads to jagged boundary issues,which are traditionally addressed through post-processing,potentially altering the mechanical properties of the optimized structure.A topology optimization method of Movable Morphable Smooth Boundary(MMSB)is proposed based on the idea of mesh adaptation to solve the problem of jagged boundaries and the influence of post-processing.Based on the ICM method,the rational fraction function is introduced as the filtering function,and a topology optimization model with the minimum weight as the objective and the displacement as the constraint is established.A triangular mesh is utilized as the base mesh in this method.The mesh is re-divided in the optimization process based on the contour line,and a smooth boundary parallel to the contour line is obtained.Numerical examples demonstrate that the MMSB method effectively resolves the jagged boundary issues,leading to enhanced structural performance.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment
文摘A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
基金National Natural Science Foundation of China (10603005)
文摘The optimization of the Earth-moon trajectory using solar electric propulsion is presented. A feasible method is proposed to optimize the transfer trajectory starting from a low Earth circular orbit (500 km altitude) to a low lunar circular orbit (200 km altitude). Due to the use of low-thrust solar electric propulsion, the entire transfer trajectory consists of hundreds or even thousands of orbital revolutions around the Earth and the moon. The Earth-orbit ascending (from low Earth orbit to high Earth orbit) and lunar descending (from high lunar orbit to low lunar orbit) trajectories in the presence of J2 perturbations and shadowing effect are computed by an analytic orbital averaging technique. A direct/indirect method is used to optimize the control steering for the trans-lunar trajectory segment, a segment from a high Earth orbit to a high lunar orbit, with a fixed thrust-coast-thrust engine sequence. For the trans-lunar trajectory segment, the equations of motion are expressed in the inertial coordinates about the Earth and the moon using a set of nonsingular equinoctial elements inclusive of the gravitational forces of the sun, the Earth, and the moon. By way of the analytic orbital averaging technique and the direct/indirect method, the Earth-moon transfer problem is converted to a parameter optimization problem, and the entire transfer trajectory is formulated and optimized in the form of a single nonlinear optimization problem with a small number of variables and constraints. Finally, an example of an Earth-moon transfer trajectory using solar electric propulsion is demonstrated.
文摘In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.
文摘Multi-Objective Optimization (MOO) techniques often achieve the combination of both maximization and minimization objectives. The study suggests scalarizing the multi-objective functions simpler using duality. An example of four objective functions has been solved using duality with satisfactory results.
基金Supported by the National Natural Science Foundation of China (Grant No. 10602055)Natural Science Foundation of Zhejiang Province (Grant No. Y6110243)
文摘At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.
基金supported by the National Natural Science Foundation of China (Grant No.51505096)the Natural Science Foundation of Heilongjiang Province (Grant No.LH2020E064).
文摘A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique.
基金supported by the National Natural Science Foundation of China(12171106)the Natural Science Foundation of Guangxi Province(2020GXNSFDA238017 and 2018GXNSFFA281007)the Shanghai Sailing Program(21YF1430300)。
文摘This paper discusses the two-block large-scale nonconvex optimization problem with general linear constraints.Based on the ideas of splitting and sequential quadratic optimization(SQO),a new feasible descent method for the discussed problem is proposed.First,we consider the problem of quadratic optimal(QO)approximation associated with the current feasible iteration point,and we split the QO into two small-scale QOs which can be solved in parallel.Second,a feasible descent direction for the problem is obtained and a new SQO-type method is proposed,namely,splitting feasible SQO(SF-SQO)method.Moreover,under suitable conditions,we analyse the global convergence,strong convergence and rate of superlinear convergence of the SF-SQO method.Finally,preliminary numerical experiments regarding the economic dispatch of a power system are carried out,and these show that the SF-SQO method is promising.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金Supported-by the National Natural Science Foundation of China(10371089)and the Foundation of Qingdao University
文摘In this paper, a smoothing QP-free infeasible method is proposed for nonlinear inequality constrained optimization problems. This iterative method is based on the solution of nonlinear equations which is obtained by the multipliers and the smoothing FisheroBurmeister function for the KKT first-order optimality conditions. Comparing with other QP-free methods, this method does not request the strict feasibility of iteration. In particular, this method is implementable and globally convergent without assuming the strict complementarity condition and the isolatedness of accumulation points. ~rthermore, the gradients of active constraints are not requested to be linearly independent. Preliminary numerical results indicate that this smoothing QP-free infeasible method is quite promising.
文摘Laser vision correction is a rapidly growing field for correcting nearsightedness, farsightedness as well as astigmatism with dominating laser-assisted in situ keratomileusis (LASIK) procedures. While the technique works well for correcting spherocylindrical aberrations, it does not fully correct high order aberrations (HOAs), in particular spherical aberration (SA), due to unexpected induction of HOAs post-surgery. Corneal epithelial remodeling was proposed as one source to account for such HOA induction process. This work proposes a dual-scale linear filtering kernel to model such a process. Several retrospective clinical data sets were used as training data sets to construct the model, with a downhill simplex algorithm to optimize the two free parameters of the kernel. The performance of the optimized kernel was testedon new clinical data sets that were not previously used for the optimization.
基金The Graduate Students Innovate Scientific Research Program (YJSCX2008-158HLJ) of Heilongjiang Provincesupported by the Distinguished Young Scholar Foundation (JC200707) of Heilongjiang Province of China
文摘In this paper, we establish a second-order sufficient condition for constrained optimization problems of a class of so called t-stable functions in terms of the first-order and the second-order Dini type directional derivatives. The result extends the corresponding result of [D. Bednarik and K. Pastor, Math. Program. Ser. A, 113(2008), 283-298] to constrained optimization problems.
基金The research of Yogendra Pandey and Vinay Singh are supported by the Science and Engineering Research Board,a statutory body of the Department of Science and Technology(DST),Government of India,through file no.PDF/2016/001113 and SCIENCE&ENGINEERING RESEARCH BOARD(SERB-DST)through project reference no.EMR/2016/002756,respectively.
文摘In this article,we use the robust optimization approach(also called the worst-case approach)for findingε-efficient solutions of the robust multiobjective optimization problem defined as a robust(worst-case)counterpart for the considered nonsmooth multiobjective programming problem with the uncertainty in both the objective and constraint functions.Namely,we establish both necessary and sufficient optimality conditions for a feasible solution to be anε-efficient solution(an approximate efficient solution)of the considered robust multiobjective optimization problem.We also use a scalarizing method in proving these optimality conditions.
文摘We propose a new unified path to approximately smoothing the nonsmooth exact penalty function in this paper. Based on the new smooth penalty function, we give a penalty algorithm to solve the constrained optimization problem, and discuss the convergence of the algorithm under mild conditions.
基金supported by the Key Foundation of Southwest University for Nationalities(09NZD001).
文摘Many difficult engineering problems cannot be solved by the conventional optimization techniques in practice. Direct searches that need no recourse to explicit derivatives are revived and become popular since the new century. In order to get a deep insight into this field, some notes on the direct searches for non-smooth optimization problems are made. The global convergence vs. local convergence and their influences on expected solutions for simulation-based stochastic optimization are pointed out. The sufficient and simple decrease criteria for step acceptance are analyzed, and why simple decrease is enough for globalization in direct searches is identified. The reason to introduce the positive spanning set and its usage in direct searches is explained. Other topics such as the generalization of direct searches to bound, linear and non-linear constraints are also briefly discussed.
文摘In this paper we consider the transmission of stored video from a server to a client for medical applications such as, Telemonitoring, to optimize medical quality of service (m-QoS) and to examine how the client buffer space can be used efficiently and effectively towards reducing the rate variability of the compressed variable bit rate (VBR) video. Three basic results are presented. First, we show how to obtain the greatest possible reduction in rate variability when sending stored video to client with a given buffer size. Second, how to reduce high peak data rate of compressed VBR video when a patient is moving/walking very fast in hospital. Third, we evaluate the impact of optimal smoothing algorithm on the network parameters such as, peak-to-mean ratio, standard deviation, delay, jitter, average delay and average jitter to optimize the m-QoS. To resolve these all problems we used optimal smoothing algorithm and show its performance over a set of long MPEG-4 encoded video traces. Simulation results show that m-QoS is optimized by minimizing network metrics.
文摘Mathematical statement of elastodynamic contact problem for cracked body with considering unilateral restrictions and friction of the crack faces is done in classical and weak forms. Different variational formulations of unilateral contact problems with friction based on boundary variational principle are considered. Nonsmooth optimization algorithms of Udzawa’s type for solution of unilateral contact problem with friction have been developed. Convergence of the proposed algorithms has been studied numerically.