期刊文献+
共找到369,460篇文章
< 1 2 250 >
每页显示 20 50 100
基于SHHO-SVR算法的锂电池剩余使用寿命预测
1
作者 冯雅馨 金辉 +2 位作者 葛红娟 王天宇 颜柏城 《测控技术》 2026年第1期31-36,51,共7页
锂离子电池因性能优越而被应用于各类航空器中,准确预测其剩余使用寿命(Remaining Useful Life,RUL)至关重要。支持向量回归(Support Vector Regression,SVR)常用于RUL预测,但其性能受参数设置影响显著,通常需要引入优化算法进行参数寻... 锂离子电池因性能优越而被应用于各类航空器中,准确预测其剩余使用寿命(Remaining Useful Life,RUL)至关重要。支持向量回归(Support Vector Regression,SVR)常用于RUL预测,但其性能受参数设置影响显著,通常需要引入优化算法进行参数寻优。当前常用于参数优化的哈里斯鹰优化(Harris Hawks Optimization,HHO)算法存在易陷入局部最优的问题。为此,通过引入Skew Tent混沌映射、融合麻雀搜索算法(Sparrow Search Algorithm,SSA)并结合多精英引导与贪婪策略,提出麻雀哈里斯鹰优化(Sparrow Harris Hawks Optimization,SHHO)算法。在19个标准测试函数和NASA锂电池数据集上的实验表明,SHHO算法具有更优的收敛精度,能有效避开局部最优,基于SHHO-SVR算法的锂电池RUL预测模型的预测精度更高,均方根误差平均降低超过50%,对寿命终止点的预测更准确。 展开更多
关键词 锂离子电池 剩余使用寿命预测 哈里斯鹰优化算法 支持向量回归 麻雀搜索算法
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
2
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
4
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
5
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
6
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
7
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
8
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
9
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
10
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
11
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
12
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
13
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
基于HHO-XFEM的地下结构裂缝智能反演识别研究
14
作者 高玮 袁硕 +2 位作者 贾超 谢渊 葛双双 《应用基础与工程科学学报》 北大核心 2025年第2期585-598,共14页
地下结构的裂损是影响其安全状态的一种重要因素,为了识别运营期交通地下结构的安全状态,基于无损检测信息,采用新型智能优化算法——哈里斯鹰优化(Harris Hawks Optimization,HHO)算法,并结合扩展有限元(Extended Finite Element Metho... 地下结构的裂损是影响其安全状态的一种重要因素,为了识别运营期交通地下结构的安全状态,基于无损检测信息,采用新型智能优化算法——哈里斯鹰优化(Harris Hawks Optimization,HHO)算法,并结合扩展有限元(Extended Finite Element Method,XFEM)技术,提出一种地下结构裂缝反演识别的HHO-XFEM新方法,并开展了静力与动力工况下的结构裂缝反演识别研究.研究结果表明:静力条件下反演裂缝的长度相对误差为2.5%,倾角相对误差为3.4%;而动力条件下反演裂缝的长度误差为6.9%,倾角误差为3.0%.总体反演识别效果良好. 展开更多
关键词 地下结构 裂缝 智能反演识别 hho算法 XFEM 动力反映 安全状态
原文传递
Galerkin solution of Winkler foundation-based irregular Kirchhoff plate model and its application in crown pillar optimization 被引量:18
15
作者 彭康 尹旭岩 +3 位作者 尹光志 许江 黄滚 殷志强 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1253-1263,共11页
Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply ... Irregular plates are very common structures in engineering,such as ore structures in mining.In this work,the Galerkin solution to the problem of a Kirchhoff plate lying on the Winkler foundation with two edges simply supported and the other two clamped supported is derived.Coordinate transformation technique is used during the solving process so that the solution is suitable to irregular shaped plates.The mechanical model and the solution proposed are then used to model the crown pillars between two adjacent levels in Sanshandao gold mine,which uses backfill method for mining operation.After that,an objective function,which takes security,economic profits and filling effect into consideration,is built to evaluate design proposals.Thickness optimizations for crown pillars are finally conducted in both conditions that the vertical stiffness of the foundation is known and unknown.The procedure presented in the work provides the guidance in thickness designing of complex shaped crown pillars and the preparation of backfill materials,thus to achieve the best balance between security and profits. 展开更多
关键词 irregular kirchhoff plate Galerkin method backfill mining crown pillars thickness optimization
在线阅读 下载PDF
基于HHO-VMD-BiGRU的水电机组振动趋势预测
16
作者 魏学锋 刘德新 +4 位作者 陈鹏 苏纪成 汪昱 吴韬为 李超顺 《中国农村水利水电》 北大核心 2025年第10期219-222,230,共5页
水电机组的振动趋势预测关乎机组安全稳定的运行,但由于机组的振动信号不具备平稳与线性的特点,针对水电机组振动趋势的准确预测是一项重大的挑战。因此,提出了一种基于HHO-VMD-BiGRU的水电机组振动趋势的预测模型。首先利用哈里斯鹰优... 水电机组的振动趋势预测关乎机组安全稳定的运行,但由于机组的振动信号不具备平稳与线性的特点,针对水电机组振动趋势的准确预测是一项重大的挑战。因此,提出了一种基于HHO-VMD-BiGRU的水电机组振动趋势的预测模型。首先利用哈里斯鹰优化算法(HHO)确定VMD分解的参数,然后进行VMD分解,对分解出的各个模态分量分别归一化并建立BiGRU模型对其预测,最后反归一化预测结果并叠加得到最终的机组振动趋势预测结果。以国内的某水电站机组数据为基础设计对比试验,结果显示该模型具有较高的预测精度,可以用于工程实际。 展开更多
关键词 振动信号 hho VMD 趋势预测 BiGRU
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型 被引量:1
17
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多元多尺度反向散布熵 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
18
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
基于HHO-MLP神经网络的变工况下齿轮箱故障诊断方法研究
19
作者 蒋章雷 郑威 +3 位作者 门大超 刘秀丽 查振栋 李子涵 《制造技术与机床》 北大核心 2025年第5期29-35,共7页
针对变工况下齿轮箱故障信号复杂多变导致故障诊断困难的问题,提出了一种基于哈里斯鹰优化器(Harris hawk optimizer,HHO)优化多层感知机(multi-layer perception,MLP)神经网络的故障诊断方法。首先,采用均方根-均值(root mean square-m... 针对变工况下齿轮箱故障信号复杂多变导致故障诊断困难的问题,提出了一种基于哈里斯鹰优化器(Harris hawk optimizer,HHO)优化多层感知机(multi-layer perception,MLP)神经网络的故障诊断方法。首先,采用均方根-均值(root mean square-mean,RMS-MEAN)方法对齿轮箱故障振动信号进行预处理,以降低随机变工况对不同振动信号的影响;其次,引入变工况修正因子k,利用HHO对MLP的超参数进行自动优化,增强振动信号中的周期性特征,构造变工况下最优的MLP网络结构;最后,将特征增强数据输入HHO-MLP中进行故障诊断。通过MCC5-THU齿轮箱故障数据集验证,该方法在变工况下对齿轮箱故障的诊断性能显著优于其他模型,故障分类的准确率可达97.5%,这说明了其在变工况下的有效性。 展开更多
关键词 齿轮箱 变工况 哈里斯鹰优化器 多层感知机 故障诊断
在线阅读 下载PDF
堆石坝施工仿真参数HHO-RDSOGM在线更新模型研究
20
作者 佟大威 孙楷翔 +1 位作者 张君 胡亦宁 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第12期1272-1287,共16页
基于施工过程中产生的海量数据流驱动堆石坝施工仿真参数更新是确保施工仿真准确性的关键.现有仿真参数更新研究主要采用贝叶斯及其衍生方法,难以准确模拟异常值多、多峰和时变的仿真参数,存在数据量大时更新效率低的问题.针对上述问题... 基于施工过程中产生的海量数据流驱动堆石坝施工仿真参数更新是确保施工仿真准确性的关键.现有仿真参数更新研究主要采用贝叶斯及其衍生方法,难以准确模拟异常值多、多峰和时变的仿真参数,存在数据量大时更新效率低的问题.针对上述问题,提出基于实时感知数据流处理的堆石坝仿真参数哈里斯鹰优化算法-堆石坝自组织高斯方法(HHO-RDSOGM)在线更新模型.首先,应用异常数据检测和处理方法提升数据质量.其次,将实时获取的施工感知数据流建模为动态高斯成分构成的仿真参数分布,通过类间节点插入和网络去噪的操作来动态地增添或者减少高斯成分的数量,并通过节点更新权值的操作来实时地改变每个局部高斯成分中的参数来改变参数局部分布形态,以实现仿真参数分布的实时更新,其中采用HHO算法优化自组织增量学习神经网络的C_(1)和C_(2)等超参数,以提升参数更新精度.案例分析表明:HHO-RDSOGM方法相较于KDE、GMM、Dirichlet、oKDE和RDSOGM等方法,能够实现复杂施工环境下仿真参数自组织在线学习,方法精度平均分别提高了30.71%、31.87%、18.91%、11.50%和8.34%,表明方法的有效性. 展开更多
关键词 堆石坝仿真 仿真参数在线更新 异常值检测与处理 优化算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部