期刊文献+
共找到365,371篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
1
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
2
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
3
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
4
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
5
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
6
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
7
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
8
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
9
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers:A Review 被引量:14
10
作者 Honghong Zhao Fengyuan Wang +3 位作者 Liru Cui Xianzhu Xu Xijiang Han Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期383-415,共33页
Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magne... Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field. 展开更多
关键词 Magnetic carbon-based composites Metal–organic frameworks Composition optimization Microstructure design EM absorption enhancement
在线阅读 下载PDF
The optimization of hydrothermal process of MoS2 nanosheets and their good microwave absorption performances 被引量:3
11
作者 Xiaoyu Lin Jing Wang +6 位作者 Zengyong Chu Dongqing Liu Taotao Guo Lingni Yang Zhenyu Huang Sitong Mu Shun Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第5期1124-1128,共5页
In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,... In this study,flower-like MoS2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S)in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS2 is a candidate for a practical microwave absorbent. 展开更多
关键词 MOS2 Hydrothermal preparation Microwave absorption performance Process optimization Microwave absorption mechanism
原文传递
Near-Infrared Spectroscopy Combined with Absorbance Upper Optimization Partial Least Squares Applied to Rapid Analysis of Polysaccharide for Proprietary Chinese Medicine Oral Solution 被引量:2
12
作者 Jiexiong Su Xinkai Gao +5 位作者 Lirong Tan Xianzhao Liu Yueqing Ye Yifang Chen Kaisheng Ma Tao Pan 《American Journal of Analytical Chemistry》 2016年第3期275-281,共7页
Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance up... Near-infrared (NIR) spectroscopy was applied to reagent-free quantitative analysis of polysaccharide of a brand product of proprietary Chinese medicine (PCM) oral solution samples. A novel method, called absorbance upper optimization partial least squares (AUO-PLS), was proposed and successfully applied to the wavelength selection. Based on varied partitioning of the calibration and prediction sample sets, the parameter optimization was performed to achieve stability. On the basis of the AUO-PLS method, the selected upper bound of appropriate absorbance was 1.53 and the corresponding wavebands combination was 400 - 1880 & 2088 - 2346 nm. With the use of random validation samples excluded from the modeling process, the root-mean-square error and correlation coefficient of prediction for polysaccharide were 27.09 mg·L<sup>-</sup><sup>1</sup> and 0.888, respectively. The results indicate that the NIR prediction values are close to those of the measured values. NIR spectroscopy combined with AUO-PLS method provided a promising tool for quantification of the polysaccharide for PCM oral solution and this technique is rapid and simple when compared with conventional methods. 展开更多
关键词 Near-Infrared Spectroscopic Analysis Proprietary Chinese Medicine Oral Solution POLYSACCHARIDE Absorbance Upper optimization Partial Least Squares
在线阅读 下载PDF
Tuning microwave absorption properties of Ti_(3)C_(2)T_(x)MXene-based materials:Component optimization and structure modulation 被引量:5
13
作者 Ming Chang Qingyu Li +2 位作者 Zirui Jia Wanru Zhao Guanglei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第17期150-170,共21页
The current electromagnetic environment brings a growing demand for efficient microwave absorption(MA)materials.Ti_(3)C_(2)T_(x)MXene,one of the 2D transition-metal carbides,is considered to be a promising MA material... The current electromagnetic environment brings a growing demand for efficient microwave absorption(MA)materials.Ti_(3)C_(2)T_(x)MXene,one of the 2D transition-metal carbides,is considered to be a promising MA material owing to its superior dielectric properties and structural processability.In order to further improve the MA performance and environmental adaptability of Ti_(3)C_(2)T_(x)MXene,Ti_(3)C_(2)T_(x)MXene-based MA materials enhanced by composition and structure design have been extensively studied and the regu-lation ideas for its MA properties can be outlined as component optimization and structure manipulation strategies based on the microwave absorption mechanism.Herein,we briefly introduced the microwave absorption mechanism and focused on the design strategies of Ti_(3)C_(2)T_(x)MXene-based MA materials based on recent advances.In addition,the prospects of Ti_(3)C_(2)T_(x)MXene-based MA materials were also discussed. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene Component optimization Structure manipulation Multifunctional materials Microwave absorption
原文传递
Genetic Algorithm and Its Application to Absorbing Coating Optimization
14
作者 Ni Weili Zeng Lin (School of Communication and Information Engineering) 《Advances in Manufacturing》 SCIE CAS 1998年第1期57-61,共5页
As a “global” numerical optimization method, genetic algorithm is briefly introduced. It is applied to optimize the absorbing coating to reduce EM scattering, leading to satisfactory results.
关键词 genetic algorithm optimization EM scattering
在线阅读 下载PDF
Time constant optimization of solar irradiance absolute radiometer 被引量:1
15
作者 唐潇 方伟 +2 位作者 王玉鹏 杨东军 衣小龙 《Optoelectronics Letters》 EI 2017年第3期179-183,共5页
We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer(SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown... We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer(SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06% in the midday and 0.275% in the morning and afternoon. The uncertainty level which can be considered negligible for SIAR is also investigated, and it is suggested that the uncertainty level has to be less than 0.02%. Then, combining the requirement of international comparison with these two conclusions, we conclude that the suitable time constant for SIAR is 20 s. 展开更多
关键词 radiometer absolute classic uncertainty negligible afternoon morning requirement optimize meaningful
原文传递
Multi-objective optimization design of radar absorbing sandwich structure
16
作者 陈明继 裴永茂 方岱宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第3期339-348,共10页
By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwic... By introducing a dimensionless parameter to couple the two objectives, weight and radar absorbing performance, into a single objective function, a multi-objective optimization procedure for the radar absorbing sandwich structure (RASS) with a cellular core is proposed. The optimization models considered are one-side clamped sandwich panels with four kinds of cores subject to uniformly distributed loads. The average specular reflectivity calculated with the transfer matrix method and the periodic moment method is utilized to characterize the radar absorbing performance, while the mechanical constraints include the facesheet yielding, core shearing, and facesheet wrinkling. The optimization analysis indicates that the sandwich structure with a two-dimensional (2D) composite lattice core filled with ultra-lightweight sponge may be a better candidate of lightweight RASS than those with cellular foam or hexagonal honeycomb cores. The 2D Kagome lattice is found to outperform the square lattice with respect to radar absorbing. 展开更多
关键词 sandwich structure multi-objective optimization LIGHTWEIGHT radar absorbing failure mode
在线阅读 下载PDF
Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
17
作者 王卫杰 赵振国 +2 位作者 赵艺 周海京 符策基 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期276-283,共8页
Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this ... Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide(Si C) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure,such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. 展开更多
关键词 silicon carbide radiative heat transfer photonic crystal optimization method
原文传递
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
18
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Efficient sampling strategy driven surrogate-based multi-objective optimization for broadband microwave metamaterial absorbers 被引量:1
19
作者 LIU Sixing PEI Changbao +3 位作者 YE Xiaodong WANG Hao WU Fan TAO Shifei 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1388-1396,共9页
Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue... Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 multi-objective optimization(MOO) Kriging model microwave metamaterial absorber(MMA) surrogate models sampling strategy
在线阅读 下载PDF
基于VMD-BSO-BiLSTM的混凝土坝变形智能预测模型 被引量:1
20
作者 王正新 高剑峰 +1 位作者 杨振亚 周明明 《河南科学》 2025年第2期241-249,共9页
混凝土坝的变形对环境荷载的反馈存在一定的滞后性,从而导致混凝土坝的变形具有较强的时效性。为了模拟环境荷载对大坝变形的时间效应,采用了双向长短时记忆智能学习算法(BiLSTM)对大坝变形进行双向学习预测。同时为了提高BiLSTM算法的... 混凝土坝的变形对环境荷载的反馈存在一定的滞后性,从而导致混凝土坝的变形具有较强的时效性。为了模拟环境荷载对大坝变形的时间效应,采用了双向长短时记忆智能学习算法(BiLSTM)对大坝变形进行双向学习预测。同时为了提高BiLSTM算法的计算精度,采用了变分模态分解算法(VMD)对变形序列进行模态分解以得到规律性较好的变形分量。通过BiLSTM训练各分量的映射网络,以此计算得到了各变形分量的预测值,将各分量的预测值相加得到了大坝变形的预测值。为了加强预测模型的自适应学习能力和模型的鲁棒性,采用天牛群优化算法(BSO)对模型进行了全局优化,从而构建了基于BSO优化的VMD-BiLSTM混凝土坝变形智能预测模型。结合工程案例可知,该变形预测模型的平均绝对百分比误差(MAPE)为3.41%,其精度水平能够满足大坝变形安全监控的需要,并且较VMD-BSO-LSTM、BSO-BiLSTM和BiLSTM模型,其MAPE相应降低了1.35%、2.11%和4.02%,显著地提高了预测精度。 展开更多
关键词 混凝土大坝 变形预测 BiLSTM bso优化算法 VMD算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部