Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional sign...Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks,as the signatures of zero-day attacks are usually not previously accessible.A machine learning(ML)-based detection algorithm is proficient in capturing statistical features of attacks and,therefore,optimistic for zero-day attack detection.ML and deep learning(DL)are employed for designing intrusion detection systems.The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS solutions that are dependent on datasets of prior signatures of the attacks.This manuscript presents the Zero-day attack detection employing an equilibrium optimizer with a deep learning(ZDAD-EODL)method to ensure cybersecurity.The ZDAD-EODL technique employs meta-heuristic feature subset selection using an optimum DL-based classification technique for zero-day attacks.Initially,the min-max scalar is utilized for normalizing the input data.For feature selection(FS),the ZDAD-EODL method utilizes the equilibrium optimizer(EO)model to choose feature sub-sets.In addition,the ZDAD-EODL technique employs the bi-directional gated recurrent unit(BiGRU)technique for the classification and identification of zero-day attacks.Finally,the detection performance of the BiGRU technique is further enhanced through the implementation of the subtraction average-based optimizer(SABO)-based tuning process.The performance of the ZDAD-EODL approach is investigated on the benchmark dataset.The comparison study of the ZDAD-EODL approach portrayed a superior accuracy value of 98.47%over existing techniques.展开更多
This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to imp...This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to improve the natural appearance of reconstructed images.Deep learning-based super-resolution(SR)algorithms reconstruct high-resolution images from low-resolution inputs,offering a practical means to enhance image quality without requiring superior imaging hardware,which is particularly important in medical applications where diagnostic accuracy is critical.Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity,visual artefacts may persist,making the design of the loss function during training essential for ensuring reliable and naturalistic image reconstruction.Our research shows on two models—SR and Invertible Rescaling Neural Network(IRN)—trained on multiple benchmark datasets that the function LSSIMN significantly contributes to the visual quality,preserving the structural fidelity on the reference datasets.The quantitative analysis of results while incorporating LSSIMN shows that including this loss function component has a mean 2.88%impact on the improvement of the final structural similarity of the reconstructed images in the validation set,in comparison to leaving it out and 0.218%in comparison when this component is non-normalised.展开更多
With an optimised hall layout,progressive design collaborations,inspiring trends and AIdriven innovations,Heimtextil 2026 reacts to the current market situation–and offers the industry a reliable constant in challeng...With an optimised hall layout,progressive design collaborations,inspiring trends and AIdriven innovations,Heimtextil 2026 reacts to the current market situation–and offers the industry a reliable constant in challenging times.Under the motto‘Lead the Change’,the leading trade fair for home and contract textiles and textile design shows how challenges can be turned into opportunities.From 13 to 16 January,more than 3,100 exhibitors from 65 countries will provide a comprehensive market overview with new collections and textile solutions.As a knowledge hub,Heimtextil delivers new strategies and concrete solutions for future business success.展开更多
The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of ...The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.展开更多
Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in ...Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM.展开更多
The challenge of optimising multimodal functions within high-dimensional domains constitutes a notable difficulty in evolutionary computation research.Addressing this issue,this study introduces the Deep Backtracking ...The challenge of optimising multimodal functions within high-dimensional domains constitutes a notable difficulty in evolutionary computation research.Addressing this issue,this study introduces the Deep Backtracking Bare-Bones Particle Swarm Optimisation(DBPSO)algorithm,an innovative approach built upon the integration of the Deep Memory Storage Mechanism(DMSM)and the Dynamic Memory Activation Strategy(DMAS).The DMSM enhances the memory retention for the globally optimal particle,promoting interaction between standard particles and their historically optimal counterparts.In parallel,DMAS assures the updated position of the globally optimal particle is appropriately aligned with the deep memory repository.The efficacy of DBPSO was rigorously assessed through a series of simulations employing the CEC2017 benchmark suite.A comparative analysis juxtaposed DBPSO's performance against five contemporary evolutionary algorithms across two experimental conditions:Dimension-50 and Dimension-100.In the 50D trials,DBPSO attained an average ranking of 2.03,whereas in the 100D scenarios,it improved to an average ranking of 1.9.Further examination utilising the CEC2019 benchmark functions revealed DBPSO's robustness,securing four first-place finishes,three second-place standings,and three third-place positions,culminating in an unmatched average ranking of 1.9 across all algorithms.These empirical results corroborate DBPSO's proficiency in delivering precise solutions for complex,high-dimensional optimisation challenges.展开更多
Impact ground pressure events occur frequently in coal mining processes,significantly affecting the personal safety of construction workers.Real-time microseismic monitoring of coal rock body rupture information can p...Impact ground pressure events occur frequently in coal mining processes,significantly affecting the personal safety of construction workers.Real-time microseismic monitoring of coal rock body rupture information can provide early warnings,and the seismic source location method is an essential indicator for evaluating a microseismic monitoring system.This paper proposes a nonlinear hybrid optimal particle swarm optimisation(PSO)microseismic positioning method based on this technique.The method first improves the PSO algorithm by using the global search performance of this method to quickly find a feasible solution and provide a better initial solution for the subsequent solution of the nonlinear optimal microseismic positioning method.This approach effectively prevents the problem of the microseismic positioning method falling into a local optimum because of an over-reliance on the initial value.In addition,the nonlinear optimal microseismic positioning method further narrows the localisation error based on the PSO algorithm.A simulation test demonstrates that the new method has a good positioning effect,and engineering application examples also show that the proposed method has high accuracy and strong positioning stability.The new method is better than the separate positioning method,both overall and in three directions,making it more suitable for solving the microseismic positioning problem.展开更多
The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment ...The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.展开更多
This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies conne...This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies connected by compliant links,which optimise aerodynamic forces though replicating the complex wing kinematics of insects.The originality of this article lies in a new design methodology based on a triple equivalence between a 3D model,a multibody model,and a mass/spring model(0D)which reduces the number of parameters in the problem.This approach facilitates NAV optimisation by using only the mass/spring model,thereby simplifying the design process while maintaining high accuracy.Two wing geometries are studied and optimised in this article to produce large-amplitude wing motions(approximately 40^\circ),and enabling flapping and twisting motion in quadrature.The results are validated thanks to experimental measurements for the large amplitude and through finite element simulations for the combined motion,confirming the effectiveness of this strategy for a NAV weighing less than 40 mg with a wingspan of under 3 cm.展开更多
This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters ...This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters were varied:B_(4)C weight percentage,milling time,and normal load,to evaluate their effects on two output parameters:wear loss and the coefficient of friction.AA2024 alloy was used as the matrix alloy,while B_(4)C particles were used as reinforcement.Due to the high hardness and wear resistance of B_(4)C,the optimized composite shows strong potential for use in aerospace structural elements and automotive brake components.The optimisation of tribological behaviour was conducted using a Taguchi-Grey Relational Analysis(Taguchi-GRA)and the Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).A total of 27 combinations of input parameters were analysed,varying the B_(4)C content(0,10,and 15 wt.%),milling time(0,15,and 25 h),and normal load(1,5,and 10 N).Wear loss and the coefficient of friction were numerically evaluated and selected as criteria for optimisation.Artificial Neural Networks(ANNs)were also applied for two outputs simultaneously.TOPSIS identified Alternative 1 as the optimal solution,confirming the results obtained using the Taguchi Grey method.The optimal condition obtained(10 wt.%B_(4)C,25 h milling time,10 N load)resulted in a minimum wear loss of 1.7 mg and a coefficient of friction of 0.176,confirming significant enhancement in tribological behaviour.Based on the results,both the B_(4)C content and the applied processing conditions have a significant impact on wear loss and frictional properties.This approach demonstrates high reliability and confidence,enabling the design of future composite materials with optimal properties for specific applications.展开更多
An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are in...An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.展开更多
Expansive soils are problematic due to the performances of their clay mineral constituent, which makes them exhibit the shrink-swell characteristics. The shrink-swell behaviours make expansive soils inappropriate for ...Expansive soils are problematic due to the performances of their clay mineral constituent, which makes them exhibit the shrink-swell characteristics. The shrink-swell behaviours make expansive soils inappropriate for direct engineering application in their natural form. In an attempt to make them more feasible for construction purposes, numerous materials and techniques have been used to stabilise the soil. In this study, the additives and techniques applied for stabilising expansive soils will be focused on,with respect to their efficiency in improving the engineering properties of the soils. Then we discussed the microstructural interaction, chemical process, economic implication, nanotechnology application, as well as waste reuse and sustainability. Some issues regarding the effective application of the emerging trends in expansive soil stabilisation were presented with three categories, namely geoenvironmental,standardisation and optimisation issues. Techniques like predictive modelling and exploring methods such as reliability-based design optimisation, response surface methodology, dimensional analysis, and artificial intelligence technology were also proposed in order to ensure that expansive soil stabilisation is efficient.展开更多
Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has becom...Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.展开更多
In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from ...In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, operating in a churn-turbulent regime. DME productivity and CO conversion were optimised by tuning operating conditions, such as superficial gas velocity, catalyst concentration, catalyst mass over molar gas flow rate (W/F), syngas composition, pressure and temperature. Reactor modelling was accomplished utilising mass balance, global kinetic models and heterogeneous hydrodynamics. In the heterogeneous flow regime, gas was distributed into two bubble phases: small and large. Simulation results were validated using data obtained from a pilot plant. The developed model is also applicable for the design of large-scale slurry reactors.展开更多
This paper presents the effect of mooring diameters, fairlead slopes and pretensions on the dynamic responses of a truss spar platform in intact and damaged line conditions. The platform is modelled as a rigid body wi...This paper presents the effect of mooring diameters, fairlead slopes and pretensions on the dynamic responses of a truss spar platform in intact and damaged line conditions. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analysed in time-domain using the implicit Newmark Beta technique. The mooring restoring force-excursion relationship is evaluated using quasi-static approach. MATLAB codes DATSpar and QSAML, are developed to compute the dynamic responses of truss spar platform and to determine the mooring system stiffness. To eliminate the conventional trial and error approach in the mooring system design, a numerical tool is also developed and described in this paper for optimising the mooring configuration. It has a graphical user interface and includes regrouping particle swarm optimisation technique combined with DATSpar and QSAML. A case study of truss spar platform with ten mooring lines is analysed using this numerical tool. The results show that optimum mooring system design benefits the oil and gas industry to economise the project cost in terms of material, weight, structural load onto the platform as well as manpower requirements. This tool is useful especially for the preliminary design of truss spar platforms and its mooring system.展开更多
Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process w...Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.展开更多
A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed t...A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs.展开更多
Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electri...Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.展开更多
The South African gold mining sector remains a significant contributor to the country’s economy.Facing several challenges that hinder the realisation of South Africa’s full mineral potential,the sector’s sustainabi...The South African gold mining sector remains a significant contributor to the country’s economy.Facing several challenges that hinder the realisation of South Africa’s full mineral potential,the sector’s sustainability and profitability can be enhanced through implementing operational improvement measures.Mobile cooling units(MCUs)were identified as a potential focus area for operational improvement.MCUs are used as tertiary or in-stope cooling in hot underground workings.In this paper,a method was presented to characterise the performance of existing MCUs based on three key performance indicators(KPIs),namely,the wet-bulb temperature ratio(WTR),efficiency and position.Optimisation strategies were then elected and implemented based on these KPIs.The implementation of this method in a South African gold mine attained a reduction in pumped water volumes,reduced operating costs through electricity cost savings and improvements in underground ventilation air temperatures.展开更多
Development of appropriate tourism infrastructure is important for protected areas that allow public access for tourism use.This is meant to avoid or minimize unfavourable impacts on natural resources through guiding ...Development of appropriate tourism infrastructure is important for protected areas that allow public access for tourism use.This is meant to avoid or minimize unfavourable impacts on natural resources through guiding tourists for proper use.In this paper,a GIS-based method,the least-cost path(LCP) modelling,is explored for planning tourist tracks in a World Heritage site in Northwest Yunnan(China),where tourism is increasing rapidly while appropriate infrastructure is almost absent.The modelling process contains three steps:1) selection of evaluation criteria(physical,biological and landscape scenic) that are relevant to track decision; 2) translation of evluation criteria into spatially explicit cost surfaces with GIS,and 3) use of Dijkstra's algorithm to determine the least-cost tracks.Four tracks that link main entrances and scenic spots of the study area are proposed after optimizing all evaluation criteria.These tracks feature lowenvironmental impacts and high landscape qualities,which represent a reasonable solution to balance tourist use and nature conservation in the study area.In addtion,the study proves that the LCP modelling can not only offer a structured framwork for track planning but also allow for different stakeholders to participate in the planning process.It therefore enhances the effectivenss of tourism planning and managemnt in protected areas.展开更多
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/286/46Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R732),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia+2 种基金Ongoing Research Funding program(ORFFT-2025-100-7),King Saud University,Riyadh,Saudi Arabia for financial supportthe Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-2913-07”the Deanship of Graduate Studies and Scientific Research at the University of Bisha for supporting this work through the Fast-Track Research Support Program。
文摘Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools.This study indicates that zero-day attacks have a significant impact on computer security.A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks,as the signatures of zero-day attacks are usually not previously accessible.A machine learning(ML)-based detection algorithm is proficient in capturing statistical features of attacks and,therefore,optimistic for zero-day attack detection.ML and deep learning(DL)are employed for designing intrusion detection systems.The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS solutions that are dependent on datasets of prior signatures of the attacks.This manuscript presents the Zero-day attack detection employing an equilibrium optimizer with a deep learning(ZDAD-EODL)method to ensure cybersecurity.The ZDAD-EODL technique employs meta-heuristic feature subset selection using an optimum DL-based classification technique for zero-day attacks.Initially,the min-max scalar is utilized for normalizing the input data.For feature selection(FS),the ZDAD-EODL method utilizes the equilibrium optimizer(EO)model to choose feature sub-sets.In addition,the ZDAD-EODL technique employs the bi-directional gated recurrent unit(BiGRU)technique for the classification and identification of zero-day attacks.Finally,the detection performance of the BiGRU technique is further enhanced through the implementation of the subtraction average-based optimizer(SABO)-based tuning process.The performance of the ZDAD-EODL approach is investigated on the benchmark dataset.The comparison study of the ZDAD-EODL approach portrayed a superior accuracy value of 98.47%over existing techniques.
基金support from the following institutional grant.Internal Grant Agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,grant no.2023A0004(https://iga.pef.czu.cz/,accessed on 6 June 2025).
文摘This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to improve the natural appearance of reconstructed images.Deep learning-based super-resolution(SR)algorithms reconstruct high-resolution images from low-resolution inputs,offering a practical means to enhance image quality without requiring superior imaging hardware,which is particularly important in medical applications where diagnostic accuracy is critical.Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity,visual artefacts may persist,making the design of the loss function during training essential for ensuring reliable and naturalistic image reconstruction.Our research shows on two models—SR and Invertible Rescaling Neural Network(IRN)—trained on multiple benchmark datasets that the function LSSIMN significantly contributes to the visual quality,preserving the structural fidelity on the reference datasets.The quantitative analysis of results while incorporating LSSIMN shows that including this loss function component has a mean 2.88%impact on the improvement of the final structural similarity of the reconstructed images in the validation set,in comparison to leaving it out and 0.218%in comparison when this component is non-normalised.
文摘With an optimised hall layout,progressive design collaborations,inspiring trends and AIdriven innovations,Heimtextil 2026 reacts to the current market situation–and offers the industry a reliable constant in challenging times.Under the motto‘Lead the Change’,the leading trade fair for home and contract textiles and textile design shows how challenges can be turned into opportunities.From 13 to 16 January,more than 3,100 exhibitors from 65 countries will provide a comprehensive market overview with new collections and textile solutions.As a knowledge hub,Heimtextil delivers new strategies and concrete solutions for future business success.
基金supported by the Australian Research Council(Grant No.IC190100020)the Australian Research Council Indus〓〓try Fellowship(Grant No.IE230100435)the National Natural Science Foundation of China(Grant Nos.12032014 and T2488101)。
文摘The integration of physics-based modelling and data-driven artificial intelligence(AI)has emerged as a transformative paradigm in computational mechanics.This perspective reviews the development and current status of AI-empowered frameworks,including data-driven methods,physics-informed neural networks,and neural operators.While these approaches have demonstrated significant promise,challenges remain in terms of robustness,generalisation,and computational efficiency.We delineate four promising research directions:(1)Modular neural architectures inspired by traditional computational mechanics,(2)physics informed neural operators for resolution-invariant operator learning,(3)intelligent frameworks for multiphysics and multiscale biomechanics problems,and(4)structural optimisation strategies based on physics constraints and reinforcement learning.These directions represent a shift toward foundational frameworks that combine the strengths of physics and data,opening new avenues for the modelling,simulation,and optimisation of complex physical systems.
基金supported by the Advanced Research and Technology Innovation Centre (ARTIC)the National University of Singapore under Grant (Project Number:ADTRP1)the sponsorship of the China Scholarship Council (No. 202306130143).
文摘Support structure,a critical component in the design for additive manufacturing(DfAM),has been largely overlooked by additive manufacturing(AM)communities.The support structure stabilises overhanging sections,aids in heat dissipation,and reduces the risk of thermal warping,residual stress,and distortion,particularly in the fabrication of complex geometries that challenge traditional manufacturing methods.Despite the importance of support structures in AM,a systematic review covering all aspects of the design,optimisation,and removal of support structures remains lacking.This review provides an overview of various support structure types—contact and non-contact,as well as identical and dissimilar material configurations—and outlines optimisation methods,including geometric,topology,simulation-driven,data-driven,and multi-objective approaches.Additionally,the mechanisms of support removal,such as mechanical milling and chemical dissolution,and innovations like dissolvable supports and sensitised interfaces,are discussed.Future research directions are outlined,emphasising artificial intelligence(AI)-driven intelligent design,multi-material supports,sustainable support materials,support-free AM techniques,and innovative support removal methods,all of which are essential for advancing AM technology.Overall,this review aims to serve as a foundational reference for the design and optimisation of the support structure in AM.
基金supported by the Artificial Intelligence Innovation Project of Wuhan Science and Technology Bureau,2023010402040016the Natural Science Foundation of Hubei Province of China,2022CFB076,JSPS KAKENHI,JP25K15279,Natural Science Foundation of Hubei Province,2023AFB003+1 种基金the National Natural Science Foundation of China,52201363the Education Department Scientific Research Programme Project of Hubei Province of China,Q20222208.
文摘The challenge of optimising multimodal functions within high-dimensional domains constitutes a notable difficulty in evolutionary computation research.Addressing this issue,this study introduces the Deep Backtracking Bare-Bones Particle Swarm Optimisation(DBPSO)algorithm,an innovative approach built upon the integration of the Deep Memory Storage Mechanism(DMSM)and the Dynamic Memory Activation Strategy(DMAS).The DMSM enhances the memory retention for the globally optimal particle,promoting interaction between standard particles and their historically optimal counterparts.In parallel,DMAS assures the updated position of the globally optimal particle is appropriately aligned with the deep memory repository.The efficacy of DBPSO was rigorously assessed through a series of simulations employing the CEC2017 benchmark suite.A comparative analysis juxtaposed DBPSO's performance against five contemporary evolutionary algorithms across two experimental conditions:Dimension-50 and Dimension-100.In the 50D trials,DBPSO attained an average ranking of 2.03,whereas in the 100D scenarios,it improved to an average ranking of 1.9.Further examination utilising the CEC2019 benchmark functions revealed DBPSO's robustness,securing four first-place finishes,three second-place standings,and three third-place positions,culminating in an unmatched average ranking of 1.9 across all algorithms.These empirical results corroborate DBPSO's proficiency in delivering precise solutions for complex,high-dimensional optimisation challenges.
基金supported by the Natural Science Foundation of Henan Province,China.(No,222300420596).
文摘Impact ground pressure events occur frequently in coal mining processes,significantly affecting the personal safety of construction workers.Real-time microseismic monitoring of coal rock body rupture information can provide early warnings,and the seismic source location method is an essential indicator for evaluating a microseismic monitoring system.This paper proposes a nonlinear hybrid optimal particle swarm optimisation(PSO)microseismic positioning method based on this technique.The method first improves the PSO algorithm by using the global search performance of this method to quickly find a feasible solution and provide a better initial solution for the subsequent solution of the nonlinear optimal microseismic positioning method.This approach effectively prevents the problem of the microseismic positioning method falling into a local optimum because of an over-reliance on the initial value.In addition,the nonlinear optimal microseismic positioning method further narrows the localisation error based on the PSO algorithm.A simulation test demonstrates that the new method has a good positioning effect,and engineering application examples also show that the proposed method has high accuracy and strong positioning stability.The new method is better than the separate positioning method,both overall and in three directions,making it more suitable for solving the microseismic positioning problem.
文摘The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.
基金supported by ANR-ASTRID NANOFLY(ANR-19-ASTR-0023)and French AID(Defense Innovation Agency).
文摘This article presents the design of a microfabricated bio-inspired flapping-wing Nnano Aaerial Vvehicle(NAV),driven by an electromagnetic system.Our approach is based on artificial wings composed of rigid bodies connected by compliant links,which optimise aerodynamic forces though replicating the complex wing kinematics of insects.The originality of this article lies in a new design methodology based on a triple equivalence between a 3D model,a multibody model,and a mass/spring model(0D)which reduces the number of parameters in the problem.This approach facilitates NAV optimisation by using only the mass/spring model,thereby simplifying the design process while maintaining high accuracy.Two wing geometries are studied and optimised in this article to produce large-amplitude wing motions(approximately 40^\circ),and enabling flapping and twisting motion in quadrature.The results are validated thanks to experimental measurements for the large amplitude and through finite element simulations for the combined motion,confirming the effectiveness of this strategy for a NAV weighing less than 40 mg with a wingspan of under 3 cm.
文摘This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters were varied:B_(4)C weight percentage,milling time,and normal load,to evaluate their effects on two output parameters:wear loss and the coefficient of friction.AA2024 alloy was used as the matrix alloy,while B_(4)C particles were used as reinforcement.Due to the high hardness and wear resistance of B_(4)C,the optimized composite shows strong potential for use in aerospace structural elements and automotive brake components.The optimisation of tribological behaviour was conducted using a Taguchi-Grey Relational Analysis(Taguchi-GRA)and the Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).A total of 27 combinations of input parameters were analysed,varying the B_(4)C content(0,10,and 15 wt.%),milling time(0,15,and 25 h),and normal load(1,5,and 10 N).Wear loss and the coefficient of friction were numerically evaluated and selected as criteria for optimisation.Artificial Neural Networks(ANNs)were also applied for two outputs simultaneously.TOPSIS identified Alternative 1 as the optimal solution,confirming the results obtained using the Taguchi Grey method.The optimal condition obtained(10 wt.%B_(4)C,25 h milling time,10 N load)resulted in a minimum wear loss of 1.7 mg and a coefficient of friction of 0.176,confirming significant enhancement in tribological behaviour.Based on the results,both the B_(4)C content and the applied processing conditions have a significant impact on wear loss and frictional properties.This approach demonstrates high reliability and confidence,enabling the design of future composite materials with optimal properties for specific applications.
基金supported by the National Natural Science Foundation of China under grant nos.61772091,61802035,61962006,61962038,U1802271,U2001212,and 62072311the Sichuan Science and Technology Program under grant nos.2021JDJQ0021 and 22ZDYF2680+7 种基金the CCF‐Huawei Database System Innovation Research Plan under grant no.CCF‐HuaweiDBIR2020004ADigital Media Art,Key Laboratory of Sichuan Province,Sichuan Conservatory of Music,Chengdu,China under grant no.21DMAKL02the Chengdu Major Science and Technology Innovation Project under grant no.2021‐YF08‐00156‐GXthe Chengdu Technology Innovation and Research and Development Project under grant no.2021‐YF05‐00491‐SNthe Natural Science Foundation of Guangxi under grant no.2018GXNSFDA138005the Guangdong Basic and Applied Basic Research Foundation under grant no.2020B1515120028the Science and Technology Innovation Seedling Project of Sichuan Province under grant no 2021006the College Student Innovation and Entrepreneurship Training Program of Chengdu University of Information Technology under grant nos.202110621179 and 202110621186.
文摘An excellent cardinality estimation can make the query optimiser produce a good execution plan.Although there are some studies on cardinality estimation,the prediction results of existing cardinality estimators are inaccurate and the query efficiency cannot be guaranteed as well.In particular,they are difficult to accurately obtain the complex relationships between multiple tables in complex database systems.When dealing with complex queries,the existing cardinality estimators cannot achieve good results.In this study,a novel cardinality estimator is proposed.It uses the core techniques with the BiLSTM network structure and adds the attention mechanism.First,the columns involved in the query statements in the training set are sampled and compressed into bitmaps.Then,the Word2vec model is used to embed the word vectors about the query statements.Finally,the BiLSTM network and attention mechanism are employed to deal with word vectors.The proposed model takes into consideration not only the correlation between tables but also the processing of complex predicates.Extensive experiments and the evaluation of BiLSTM-Attention Cardinality Estimator(BACE)on the IMDB datasets are conducted.The results show that the deep learning model can significantly improve the quality of cardinality estimation,which is a vital role in query optimisation for complex databases.
文摘Expansive soils are problematic due to the performances of their clay mineral constituent, which makes them exhibit the shrink-swell characteristics. The shrink-swell behaviours make expansive soils inappropriate for direct engineering application in their natural form. In an attempt to make them more feasible for construction purposes, numerous materials and techniques have been used to stabilise the soil. In this study, the additives and techniques applied for stabilising expansive soils will be focused on,with respect to their efficiency in improving the engineering properties of the soils. Then we discussed the microstructural interaction, chemical process, economic implication, nanotechnology application, as well as waste reuse and sustainability. Some issues regarding the effective application of the emerging trends in expansive soil stabilisation were presented with three categories, namely geoenvironmental,standardisation and optimisation issues. Techniques like predictive modelling and exploring methods such as reliability-based design optimisation, response surface methodology, dimensional analysis, and artificial intelligence technology were also proposed in order to ensure that expansive soil stabilisation is efficient.
文摘Self-piercing riveting(SPR)is a cold forming technique used to fasten together two or more sheets of materials with a rivet without the need to predrill a hole.The application of SPR in the automotive sector has become increasingly popular mainly due to the growing use of lightweight materials in transportation applications.However,SPR joining of these advanced light materials remains a challenge as these materials often lack a good combination of high strength and ductility to resist the large plastic deformation induced by the SPR process.In this paper,SPR joints of advanced materials and their corresponding failure mechanisms are discussed,aiming to provide the foundation for future improvement of SPR joint quality.This paper is divided into three major sections:1)joint failures focusing on joint defects originated from the SPR process and joint failure modes under different mechanical loading conditions,2)joint corrosion issues,and 3)joint optimisation via process parameters and advanced techniques.
文摘In the present study, we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2, operating in a churn-turbulent regime. DME productivity and CO conversion were optimised by tuning operating conditions, such as superficial gas velocity, catalyst concentration, catalyst mass over molar gas flow rate (W/F), syngas composition, pressure and temperature. Reactor modelling was accomplished utilising mass balance, global kinetic models and heterogeneous hydrodynamics. In the heterogeneous flow regime, gas was distributed into two bubble phases: small and large. Simulation results were validated using data obtained from a pilot plant. The developed model is also applicable for the design of large-scale slurry reactors.
基金partially supported by YUTP-FRG funded by PETRONAS
文摘This paper presents the effect of mooring diameters, fairlead slopes and pretensions on the dynamic responses of a truss spar platform in intact and damaged line conditions. The platform is modelled as a rigid body with three degrees-of-freedom and its motions are analysed in time-domain using the implicit Newmark Beta technique. The mooring restoring force-excursion relationship is evaluated using quasi-static approach. MATLAB codes DATSpar and QSAML, are developed to compute the dynamic responses of truss spar platform and to determine the mooring system stiffness. To eliminate the conventional trial and error approach in the mooring system design, a numerical tool is also developed and described in this paper for optimising the mooring configuration. It has a graphical user interface and includes regrouping particle swarm optimisation technique combined with DATSpar and QSAML. A case study of truss spar platform with ten mooring lines is analysed using this numerical tool. The results show that optimum mooring system design benefits the oil and gas industry to economise the project cost in terms of material, weight, structural load onto the platform as well as manpower requirements. This tool is useful especially for the preliminary design of truss spar platforms and its mooring system.
文摘Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.
基金National Natural Science Foundation of China under Grant Nos.51675525 and 11725211.
文摘A general and new explicit isogeometric topology optimisation approach with moving morphable voids(MMV)is proposed.In this approach,a novel multiresolution scheme with two distinct discretisation levels is developed to obtain high-resolution designs with a relatively low computational cost.Ersatz material model based on Greville abscissae collocation scheme is utilised to represent both the Young’s modulus of the material and the density field.Two benchmark examples are tested to illustrate the effectiveness of the proposed method.Numerical results show that high-resolution designs can be obtained with relatively low computational cost,and the optimisation can be significantly improved without introducing additional DOFs.
基金National Natural Science Foundation of China,Grant/Award Number:51677059。
文摘Introducing carbon trading into electricity market can convert carbon dioxide into schedulable resources with economic value.However,the randomness of wind power generation puts forward higher requirements for electricity market transactions.Therefore,the carbon trading market is introduced into the wind power market,and a new form of low-carbon economic dispatch model is developed.First,the economic dispatch goal of wind power is be considered.It is projected to save money and reduce the cost of power generation for the system.The model includes risk operating costs to account for the impact of wind power output variability on the system,as well as wind farm negative efficiency operating costs to account for the loss caused by wind abandonment.The model also employs carbon trading market metrics to achieve the goal of lowering system carbon emissions,and analyze the impact of different carbon trading prices on the system.A low-carbon economic dispatch model for the wind power market is implemented based on the following two goals.Finally,the solution is optimised using the Ant-lion optimisation method,which combines Levi's flight mechanism and golden sine.The proposed model and algorithm's rationality is proven through the use of cases.
基金This work was sponsored by ETA Operations(Pty)Ltd.
文摘The South African gold mining sector remains a significant contributor to the country’s economy.Facing several challenges that hinder the realisation of South Africa’s full mineral potential,the sector’s sustainability and profitability can be enhanced through implementing operational improvement measures.Mobile cooling units(MCUs)were identified as a potential focus area for operational improvement.MCUs are used as tertiary or in-stope cooling in hot underground workings.In this paper,a method was presented to characterise the performance of existing MCUs based on three key performance indicators(KPIs),namely,the wet-bulb temperature ratio(WTR),efficiency and position.Optimisation strategies were then elected and implemented based on these KPIs.The implementation of this method in a South African gold mine attained a reduction in pumped water volumes,reduced operating costs through electricity cost savings and improvements in underground ventilation air temperatures.
基金funded by the CEMSIT project from the Flemish Inter-university Council of Belgiumthe grant(No.31160101)from National Natural Science Foundation of China
文摘Development of appropriate tourism infrastructure is important for protected areas that allow public access for tourism use.This is meant to avoid or minimize unfavourable impacts on natural resources through guiding tourists for proper use.In this paper,a GIS-based method,the least-cost path(LCP) modelling,is explored for planning tourist tracks in a World Heritage site in Northwest Yunnan(China),where tourism is increasing rapidly while appropriate infrastructure is almost absent.The modelling process contains three steps:1) selection of evaluation criteria(physical,biological and landscape scenic) that are relevant to track decision; 2) translation of evluation criteria into spatially explicit cost surfaces with GIS,and 3) use of Dijkstra's algorithm to determine the least-cost tracks.Four tracks that link main entrances and scenic spots of the study area are proposed after optimizing all evaluation criteria.These tracks feature lowenvironmental impacts and high landscape qualities,which represent a reasonable solution to balance tourist use and nature conservation in the study area.In addtion,the study proves that the LCP modelling can not only offer a structured framwork for track planning but also allow for different stakeholders to participate in the planning process.It therefore enhances the effectivenss of tourism planning and managemnt in protected areas.