期刊文献+
共找到1,292篇文章
< 1 2 65 >
每页显示 20 50 100
Superior decomposition of xenobiotic RB5 dye using three-dimensional electrochemical treatment:Response surface methodology modelling,artificial intelligence,and machine learning-based optimisation approaches
1
作者 Voravich Ganthavee Antoine P.Trzcinski 《Water Science and Engineering》 2025年第1期1-10,共10页
The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment ... The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation. 展开更多
关键词 Three-dimensional electrochemical treatment Dye-polluted wastewater Artificial intelligence Machine learning optimisation Analysis of variance Error function analysis
在线阅读 下载PDF
Application of Various Optimisation Methods in the Multi-Optimisation for Tribological Properties of Al-B_(4)C Composites
2
作者 Sandra Gajevic Slavica Miladinovic +3 位作者 Jelena Jovanovic Onur Güler SerdarÖzkaya Blaža Stojanovic 《Computers, Materials & Continua》 2025年第9期4341-4361,共21页
This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters ... This paper presents an investigation of the tribological performance of AA2024–B_(4)C composites,with a specific focus on the influence of reinforcement and processing parameters.In this study three input parameters were varied:B_(4)C weight percentage,milling time,and normal load,to evaluate their effects on two output parameters:wear loss and the coefficient of friction.AA2024 alloy was used as the matrix alloy,while B_(4)C particles were used as reinforcement.Due to the high hardness and wear resistance of B_(4)C,the optimized composite shows strong potential for use in aerospace structural elements and automotive brake components.The optimisation of tribological behaviour was conducted using a Taguchi-Grey Relational Analysis(Taguchi-GRA)and the Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).A total of 27 combinations of input parameters were analysed,varying the B_(4)C content(0,10,and 15 wt.%),milling time(0,15,and 25 h),and normal load(1,5,and 10 N).Wear loss and the coefficient of friction were numerically evaluated and selected as criteria for optimisation.Artificial Neural Networks(ANNs)were also applied for two outputs simultaneously.TOPSIS identified Alternative 1 as the optimal solution,confirming the results obtained using the Taguchi Grey method.The optimal condition obtained(10 wt.%B_(4)C,25 h milling time,10 N load)resulted in a minimum wear loss of 1.7 mg and a coefficient of friction of 0.176,confirming significant enhancement in tribological behaviour.Based on the results,both the B_(4)C content and the applied processing conditions have a significant impact on wear loss and frictional properties.This approach demonstrates high reliability and confidence,enabling the design of future composite materials with optimal properties for specific applications. 展开更多
关键词 Aluminium composites B_(4)C reinforcement taguchi-grey artificial neural networks AHP-TOPSIS optimisation wear loss coefficient of friction
在线阅读 下载PDF
Optimal proportioning of iron ore in sintering process based on improved multi-objective beluga whale optimisation algorithm 被引量:1
3
作者 Zong-ping Li Xu-dong Li +5 位作者 Xue-tong Yan Wu Wen Xiao-xin Zeng Rong-jia Zhu Ya-hui Wang Ling-zhi Yi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第7期1597-1609,共13页
Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the... Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance. 展开更多
关键词 Sintering process Proportioning Iron ore Multi-objective beluga whale optimisation algorithm Proportioning cost
原文传递
Adaptive optimisation of explosive reactive armour for protection against kinetic energy and shaped charge threats
4
作者 Philipp Moldtmann Julian Berk +5 位作者 Shannon Ryan Andreas Klavzar Jerome Limido Christopher Lange Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期1-12,共12页
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj... We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples. 展开更多
关键词 Terminal ballistics Armour Explosive reactive armour optimisation Bayesian optimisation
在线阅读 下载PDF
Evolutionary Multi/Many-Objective Optimisation via Bilevel Decomposition
5
作者 Shouyong Jiang Jinglei Guo +1 位作者 Yong Wang Shengxiang Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1973-1986,共14页
Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communicati... Decomposition of a complex multi-objective optimisation problem(MOP)to multiple simple subMOPs,known as M2M for short,is an effective approach to multi-objective optimisation.However,M2M facilitates little communication/collaboration between subMOPs,which limits its use in complex optimisation scenarios.This paper extends the M2M framework to develop a unified algorithm for both multi-objective and manyobjective optimisation.Through bilevel decomposition,an MOP is divided into multiple subMOPs at upper level,each of which is further divided into a number of single-objective subproblems at lower level.Neighbouring subMOPs are allowed to share some subproblems so that the knowledge gained from solving one subMOP can be transferred to another,and eventually to all the subMOPs.The bilevel decomposition is readily combined with some new mating selection and population update strategies,leading to a high-performance algorithm that competes effectively against a number of state-of-the-arts studied in this paper for both multiand many-objective optimisation.Parameter analysis and component analysis have been also carried out to further justify the proposed algorithm. 展开更多
关键词 Bilevel decomposition evolutionary algorithm many-objective optimisation multi-objective optimisation
在线阅读 下载PDF
Bayesian Classifier Based on Robust Kernel Density Estimation and Harris Hawks Optimisation
6
作者 Bi Iritie A-D Boli Chenghao Wei 《International Journal of Internet and Distributed Systems》 2024年第1期1-23,共23页
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr... In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers. 展开更多
关键词 CLASSIFICATION Robust Kernel Density Estimation M-ESTIMATION Harris Hawks optimisation Algorithm Complete Cross-Validation
在线阅读 下载PDF
Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
7
作者 Abdulrahman M.Abdulghani 《Journal on Artificial Intelligence》 2024年第1期241-259,共19页
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r... Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments. 展开更多
关键词 MAKESPAN multi-objective optimisation task scheduling cloud computing hybrid algorithms
在线阅读 下载PDF
An Optimisation Strategy for Electric Vehicle Charging Station Layout Incorporating Mini Batch K-Means and Simulated Annealing Algorithms
8
作者 Haojie Yang Xiang Wen Peng Geng 《Journal on Artificial Intelligence》 2024年第1期283-300,共18页
To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisa... To enhance the rationality of the layout of electric vehicle charging stations,meet the actual needs of users,and optimise the service range and coverage efficiency of charging stations,this paper proposes an optimisation strategy for the layout of electric vehicle charging stations that integrates Mini Batch K-Means and simulated annealing algorithms.By constructing a circle-like service area model with the charging station as the centre and a certain distance as the radius,the maximum coverage of electric vehicle charging stations in the region and the influence of different regional environments on charging demand are considered.Based on the real data of electric vehicle charging stations in Nanjing,Jiangsu Province,this paper uses the model proposed in this paper to optimise the layout of charging stations in the study area.The results show that the optimisation strategy incorporating Mini Batch K-Means and simulated annealing algorithms outperforms the existing charging station layouts in terms of coverage and the number of stations served,and compared to the original charging station layouts,the optimised charging station layouts have flatter Lorentzian curves and are closer to the average distribution.The proposed optimisation strategy not only improves the service efficiency and user satisfaction of EV(Electric Vehicle)charging stations but also provides a reference for the layout optimisation of EV charging stations in other cities,which has important practical value and promotion potential. 展开更多
关键词 Mini Batch K-Means simulated annealing algorithm electric vehicle charging stations layout optimisation
在线阅读 下载PDF
地方大型科研仪器设备开放共享优化路径研究——以湖南省科研设施与科研仪器开放共享服务平台为例 被引量:4
9
作者 鞠邦青 曾德超 龙琦桢 《分析仪器》 2025年第1期53-61,共9页
大型科研仪器设备是促进技术创新的核心科技资源,随着科研投入的增加,出现了重复购置、单位化和闲置浪费等问题,需要加快推进科研设施与仪器实现资源共享。本文以湖南省大型科研仪器设备开放共享服务平台为例,利用比较分析法和数据可视... 大型科研仪器设备是促进技术创新的核心科技资源,随着科研投入的增加,出现了重复购置、单位化和闲置浪费等问题,需要加快推进科研设施与仪器实现资源共享。本文以湖南省大型科研仪器设备开放共享服务平台为例,利用比较分析法和数据可视化法,对平台中3540条仪器数据及14329条仪器服务开机时数数据进行深入分析。结果表明,地方大型科研仪器设备的开放共享在政策落实、共享意识、资源分布、仪器来源方面存在一定问题,提出“强政策”、“重服务”、“融区域”以及“重研发”的建议,以期推动湖南省科研资源的高效配置和综合利用,促进区域科技创新能力的提升。 展开更多
关键词 大型科研仪器 开放共享 服务平台 优化路径
在线阅读 下载PDF
基于艺术设计理念的农业采摘机器人外观优化设计 被引量:1
10
作者 刘臻 《农机化研究》 北大核心 2025年第6期214-218,共5页
农业采摘机器人能够自动执行采摘任务,可在不受季节、天气和时间限制的情况下连续工作,确保了农作物的及时采摘和处理,提高农业生产的效率和质量。然而,目前市场上大部分的机器人设计仅关注功能和效率,忽视了外观设计对用户体验和农业... 农业采摘机器人能够自动执行采摘任务,可在不受季节、天气和时间限制的情况下连续工作,确保了农作物的及时采摘和处理,提高农业生产的效率和质量。然而,目前市场上大部分的机器人设计仅关注功能和效率,忽视了外观设计对用户体验和农业生产环境的影响。为此,基于艺术设计理念在产品设计中的应用背景和优势,分析了农业采摘机器人的使用环境和用户需求,提出了针对流线型外观、色彩搭配和材质选择的优化设计原则,通过实例展示了几种基于艺术设计理念的农业采摘机器人外观设计方案,并对其进行了评估和讨论。 展开更多
关键词 采摘机器人 外观优化 造型设计 人机交互
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测 被引量:1
11
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习机 改进粒子群优化算法
在线阅读 下载PDF
基于视觉舒适的计算性设计实践 被引量:1
12
作者 曲大刚 黄茜 +1 位作者 孙澄 李岫峰 《世界建筑》 2025年第3期50-54,共5页
在可持续发展背景下,计算性设计在建筑领域的应用日益重要。本文以北方寒地某煤矿安全指挥中心项目为例,深入探讨基于视觉舒适的计算性设计实践。针对项目中安全监控中心和安全指挥调度中心,分别运用多目标优化方法和基于视觉舒适度的... 在可持续发展背景下,计算性设计在建筑领域的应用日益重要。本文以北方寒地某煤矿安全指挥中心项目为例,深入探讨基于视觉舒适的计算性设计实践。针对项目中安全监控中心和安全指挥调度中心,分别运用多目标优化方法和基于视觉舒适度的优化策略。通过设定相关优化目标与参量,对安全监控中心的开窗尺度进行优化,提升室内采光性能、控制眩光;利用视觉舒适度预测模型和平台,对安全指挥调度中心的建筑形态、遮阳设计和材料选择等进行迭代优化,提高办公空间视觉舒适度,合理优化功能分区。实践证明,计算性设计可有效解决复杂建筑设计难题,提升设计质量与效率,为未来建筑设计发展提供新思路。 展开更多
关键词 计算性设计 设计实践 多目标优化 视觉舒适
在线阅读 下载PDF
基于PSO-PCA-CNN的水电机组故障诊断
13
作者 姬升阳 魏学锋 +4 位作者 曾广栋 朱斌 周鑫 何志宏 李超顺 《水电能源科学》 北大核心 2025年第10期178-181,211,共5页
为了充分利用水电机组振动信号资源,建立更高效的故障诊断模型,提出利用主成分分析(PCA)对振动数据进行降维,基于粒子群算法(PSO)优化目标维度和卷积神经网络(CNN)参数的故障诊断模型。首先将多通道的原始振动数据进行通道层面的降维,... 为了充分利用水电机组振动信号资源,建立更高效的故障诊断模型,提出利用主成分分析(PCA)对振动数据进行降维,基于粒子群算法(PSO)优化目标维度和卷积神经网络(CNN)参数的故障诊断模型。首先将多通道的原始振动数据进行通道层面的降维,再将降维后数据输入CNN网络进行故障诊断分类;其次采用PSO对目标维度和CNN模型中部分关键参数进行寻优,实现信号自适应降维,构建更高效的模型;最后基于寻优结果进行数据降维和模型深入训练,获得最优诊断模型,输出诊断结果。基于某水电机组不同工况下的实测振动数据进行试验对比和分析,验证了所提方法具有较高的诊断精度和稳定性。 展开更多
关键词 故障诊断 水电机组 粒子群算法 主成分分析 卷积神经网络
原文传递
火力发电企业成本管理与优化策略研究 被引量:1
14
作者 金锋赫 王晓宇 《现代工业经济和信息化》 2025年第4期199-201,共3页
随着电力市场化的不断推进以及对节能降碳、转型升级的不断深化,火力发电企业迫切需要有力的成本管理手段来提高发电厂的收益。通过对火力发电企业的成本结构以及常见的问题进行分析和总结,提出相应的措施以期为后续相关的研究提供参考。
关键词 成本管理 火力发电企业 优化策略
在线阅读 下载PDF
基于气体扩散层接触压力均一性的质子交换膜燃料电池封装载荷优化研究
15
作者 杨硕 李楠 +4 位作者 谈柱恩 徐云飞 李江飞 刘智 林杰威 《可再生能源》 北大核心 2025年第9期1151-1158,共8页
文章建立了质子交换膜燃料电池三维有限元模型,研究燃料电池封装载荷对气体扩散层(GDL)接触压力均一性的影响,使用变异系数(C_(V))衡量GDL接触压力的均匀程度,并以C_(V)最小为优化目标,使用支持向量机、反向传播神经网络、粒子群优化算... 文章建立了质子交换膜燃料电池三维有限元模型,研究燃料电池封装载荷对气体扩散层(GDL)接触压力均一性的影响,使用变异系数(C_(V))衡量GDL接触压力的均匀程度,并以C_(V)最小为优化目标,使用支持向量机、反向传播神经网络、粒子群优化算法优化支持向量机和灰狼优化算法优化支持向量机建立代理模型,再将最佳代理模型作为优化算法中的适应度函数,通过灰狼优化算法对封装载荷进行优化。结果表明:与其他3种方法相比,使用粒子群优化算法优化支持向量机建立的代理模型的预测精度更高;与优化前相比,C_(V)减小了35%,接触压力均一性得到提升,燃料电池的可靠性和使用寿命均得到改善。 展开更多
关键词 质子交换膜燃料电池 气体扩散层 接触压力 封装载荷 优化
在线阅读 下载PDF
全地形履带车辆复合悬挂系统多目标优化研究
16
作者 孙宝 高敏 +2 位作者 李占龙 常艺红 赵宇翔 《机械科学与技术》 北大核心 2025年第6期969-978,共10页
全地形履带车辆因其在复杂的行驶环境中表现优异,广泛应用于军事、救援和农业等领域,但对其悬挂系统的研究相对较少。本文采用多目标灰狼优化算法,对全地形履带车辆并联仿生型复合悬挂系统进行多目标优化,以提升车辆的乘坐舒适性和平顺... 全地形履带车辆因其在复杂的行驶环境中表现优异,广泛应用于军事、救援和农业等领域,但对其悬挂系统的研究相对较少。本文采用多目标灰狼优化算法,对全地形履带车辆并联仿生型复合悬挂系统进行多目标优化,以提升车辆的乘坐舒适性和平顺性。首先,通过多尺度法数值求解系统动力学方程,确定关键目标函数;其次,以位移传递率和固有频率为优化目标,建立该悬挂系统多目标优化模型;最后,使用优化算法确定弹簧阻尼器的最优安装角度,以及相应的最优刚度系数和阻尼系数。结果表明,优化后的悬挂系统具备较优的隔振性能,验证了方法在复杂悬挂系统优化中的有效性,为仿真实验的参数设置提供理论指导,也为类似工程问题的解决提供新思路。 展开更多
关键词 全地形履带车辆 复合悬挂 多目标优化 平顺性
在线阅读 下载PDF
大悬伸工况下刀具铣削稳定性的影响研究
17
作者 韩毅 熊计 +2 位作者 杨露 郭仕华 代洋 《工具技术》 北大核心 2025年第3期94-99,共6页
针对大悬伸工况下铣刀加工稳定性差的问题,对铣削过程中的刀具刚性进行仿真分析。结合大悬伸工况下的实际加工情况,对刀具进行简化并建模,建立用于大悬伸加工的铣刀模型。选择铣刀片前角、加工主轴转速和加工进给速率三个主要因素进行... 针对大悬伸工况下铣刀加工稳定性差的问题,对铣削过程中的刀具刚性进行仿真分析。结合大悬伸工况下的实际加工情况,对刀具进行简化并建模,建立用于大悬伸加工的铣刀模型。选择铣刀片前角、加工主轴转速和加工进给速率三个主要因素进行有限元仿真实验。基于DEFORM软件分析加工过程中的平均扭矩和径向载荷等,以提升刀具刚性为优化目标,得到最适合的加工参数。分析单个刀片铣削过程的受力变化趋势,确定加工过程中最大载荷出现的大致位置。 展开更多
关键词 大悬伸铣削 刀具刚性 DEFORM有限元仿真 参数优化
在线阅读 下载PDF
基于美拉德反应的提高舒适度烟用香精的制备
18
作者 李登科 张春涛 +5 位作者 徐睿 王卿兮 沈潇 吴若昕 马立超 冯涛 《香料香精化妆品》 2025年第4期6-12,共7页
以L-阿拉伯糖和氨基酸为反应物,通过美拉德反应制备烟用香精。经筛选,确定甘氨酸与L-阿拉伯糖反应产物的香气适于用作烟用香精。通过单因素和响应面试验分析各指标对棕色化反应程度的影响,得到最佳工艺条件:溶剂(水/丙二醇)体积比为1.43... 以L-阿拉伯糖和氨基酸为反应物,通过美拉德反应制备烟用香精。经筛选,确定甘氨酸与L-阿拉伯糖反应产物的香气适于用作烟用香精。通过单因素和响应面试验分析各指标对棕色化反应程度的影响,得到最佳工艺条件:溶剂(水/丙二醇)体积比为1.43、pH值为4.11、反应时间为3.23 min、反应物(L-阿拉伯糖/氨基酸)质量比为1.49。在此条件下制备的香精用于卷烟加香,能够显著提升卷烟舒适度。 展开更多
关键词 美拉德反应 烟用香精 卷烟舒适度 工艺优化
在线阅读 下载PDF
激光熔覆陶瓷涂层的研究进展
19
作者 牟永强 刘金铭 +1 位作者 谭欣荣 刘阳 《宇航材料工艺》 北大核心 2025年第3期12-22,共11页
激光熔覆技术是一种优异的表面改性方法,能够在基体表面生成致密的陶瓷涂层,还能够实现对磨损、腐蚀等损伤的现场修复,使零部件在无须更换的情况下保持服役状态,极大程度上降低了维修成本。本文首先对激光熔覆技术和激光熔覆陶瓷涂层分... 激光熔覆技术是一种优异的表面改性方法,能够在基体表面生成致密的陶瓷涂层,还能够实现对磨损、腐蚀等损伤的现场修复,使零部件在无须更换的情况下保持服役状态,极大程度上降低了维修成本。本文首先对激光熔覆技术和激光熔覆陶瓷涂层分类情况进行了介绍,然后对激光熔覆陶瓷涂层的数值模拟以及性能优化方法进行了阐述,最后概括了激光熔覆陶瓷涂层的应用研究方向,针对研发、工业生产中出现的问题和改进措施进行了展望。 展开更多
关键词 激光熔覆 陶瓷涂层 数值模拟 性能优化 应用
在线阅读 下载PDF
基于改进模糊支持向量回归模型的地震人员伤亡预测研究 被引量:1
20
作者 沈健 李梦瑶 《价值工程》 2025年第7期101-104,共4页
本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最... 本文构建了地震人员伤亡预测指标体系,并采用主成分分析法(PCA)对数据进行降维处理。使用模糊支持向量回归(FSVR)模型减少噪声点对预测结果的影响,并采用模糊均值聚类(FCM)算法确定隶属度函数。此外,利用粒子群算法(PSO)进行寻优得到最优FSVR参数,最终建立PSO-FSVR地震伤亡预测模型。 展开更多
关键词 地震伤亡预测 模糊支持向量回归 粒子群优化算法 主成分分析
在线阅读 下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部