期刊文献+
共找到534,312篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
1
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
2
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm
3
作者 Seongsoo Cho Yeonwoo Lee Cheolhee Yoon 《Computer Modeling in Engineering & Sciences》 2025年第6期3769-3793,共25页
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas... As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios. 展开更多
关键词 Grasshopper optimization algorithm VANET intelligent transportation systems traffic congestion clustering efficiency
在线阅读 下载PDF
Efficient Production of Pyrrolnitrin by Optimizing Culture Medium and Blocking Competitive Secondary Metabolic Pathways in Pseudomonas protegens JP2-4390
4
作者 SHEN Jiamin ZHANG Xinxin +2 位作者 WANG Yucong CHEN Guoqing FENG Guozhong 《Rice science》 2025年第2期156-159,I0033-I0040,共12页
Pyrrolnitrin(PRN),a natural halogenated phenylpyrrole derivative,exhibits a broad spectrum of antimicrobial activity against a wide range of bacteria and fungi.In this study,we isolated a strain of Pseudomonas protege... Pyrrolnitrin(PRN),a natural halogenated phenylpyrrole derivative,exhibits a broad spectrum of antimicrobial activity against a wide range of bacteria and fungi.In this study,we isolated a strain of Pseudomonas protegens JP2-4390 from the rhizosphere soil of rice plants,which showed strong inhibitory activity against Rhizoctonia solani. 展开更多
关键词 DERIVATIVE spectrum efficient
在线阅读 下载PDF
Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction
5
作者 Elaine Yi-Ling Wu 《Computer Modeling in Engineering & Sciences》 2025年第4期1185-1214,共30页
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst... Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems. 展开更多
关键词 Hybrid renewable energy system multi-neighborhood enhanced Harris Hawks optimization costemission optimization renewable energy allocation problem reliability
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
6
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal optimization Algorithm(GJOA) Improved Whale optimization Algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Direct detection with an optimal transfer function:toward the electrical spectral efficiency of coherent homodyne detection
7
作者 Xingfeng Li Jingchi Li +5 位作者 Xiong Ni Hudi Liu Qunbi Zhuge Haoshuo Chen William Shieh Yikai Su 《Opto-Electronic Science》 2025年第2期1-15,共15页
Complex-valued double-sideband direct detection(DD)can reconstruct the optical field and achieve a high electrical spectral efficiency(ESE)comparable to that of a coherent homodyne receiver,and DD does not require a c... Complex-valued double-sideband direct detection(DD)can reconstruct the optical field and achieve a high electrical spectral efficiency(ESE)comparable to that of a coherent homodyne receiver,and DD does not require a costly local oscillator laser.However,a fundamental question remains if there is an optimal DD receiver structure with the simplest design to approach the performance of the coherent homodyne detection.This study derives the optimal DD receiver structure with an optimal transfer function to recover a quadrature amplitude modulation(QAM)signal with a near-zero guard band at the central frequency of the signal.We derive the theoretical ESE limit for various detection schemes by invoking Shannon’s formula.Our proposed scheme is closest to coherent homodyne detection in terms of the theoretical ESE limit.By leveraging a WaveShaper to construct the optimal transfer function,we conduct a proof-of-concept experiment to transmit a net 228.85-Gb/s 64-QAM signal over an 80-km single-mode fiber with a net ESE of 8.76 b/s/Hz.To the best of our knowledge,this study reports the highest net ESE per polarization per wavelength for DD transmission beyond 40-km single-mode fiber.For a comprehensive metric,denoted as 2ESE×Reach,we achieve the highest 2ESE×Reach per polarization per wavelength for DD transmission. 展开更多
关键词 optical communication direct detection optical field recovery electrical spectral efficiency
在线阅读 下载PDF
Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm
8
作者 Bo Yang Ruyi Zheng +2 位作者 Yucun Qian Boxiao Liang Jingbo Wang 《Global Energy Interconnection》 2025年第2期316-337,共22页
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a... Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively. 展开更多
关键词 Photovoltaic cell Bayesian neural network Artificial ecosystem optimization Parameter identification
在线阅读 下载PDF
An efficient deep learning-based topology optimization method for continuous fiber composite structure
9
作者 Jicheng Li Hongling Ye +3 位作者 Yongjia Dong Zhanli Liu Tianfeng Sun Haisheng Wu 《Acta Mechanica Sinica》 2025年第4期82-96,共15页
This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly... This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly includes three steps:(1)a ResUNet-involved generative and adversarial network(ResUNet-GAN)is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure,and a fiber orientation chromatogram is presented to represent continuous fiber angles;(2)to avoid the local optimum problem,the independent continuous mapping method(ICM method)considering the improved principal stress orientation interpolated continuous fiber angle optimization(PSO-CFAO)strategy is utilized to construct CFRCS topology optimization dataset;(3)the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations.Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy.Furthermore,the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing.Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced.The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications. 展开更多
关键词 Topology optimization Fiber-reinforced composite structure Generative and adversarial networks Additive manufacturing
原文传递
Efficient Topology Optimization Design for Three-Dimensional Heat Transfer Structure Based on ResUNet-Involved Generative Adversarial Nets
10
作者 Jicheng Li Hongling Ye +2 位作者 Nan Wei Yongjia Dong Sujun Wang 《Acta Mechanica Solida Sinica》 2025年第5期857-871,共15页
In this paper,a data-driven topology optimization(TO)method is proposed for the efficient design of three-dimensional heat transfer structures.The presented method is composed of four parts.Firstly,the three-dimension... In this paper,a data-driven topology optimization(TO)method is proposed for the efficient design of three-dimensional heat transfer structures.The presented method is composed of four parts.Firstly,the three-dimensional heat transfer topology optimization(HTTO)dataset,composed of both design parameters and the corresponding HTTO configuration,is established by the solid isotropic material with penalization(SIMP)method.Secondly,a high-performance surrogate model,named ResUNet-assisted generative adversarial nets(ResUNet-GAN),is developed by combining ReUNet and generative and adversarial nets(GAN).Thirdly,the same-resolution(SR)ResUNet-GAN is deployed to design three-dimensional heat transfer configurations by feeding design parameters.Finally,the finite element mesh of the optimized configuration is refined by the cross-resolution(CR)ResUNet-GAN to obtain near-optimal three-dimensional heat transfer configurations.Compared with conventional TO methods,the proposed method has two outstanding advantages:(1)the developed surrogate model establishes the end-to-end mapping from the design parameters to the three-dimensional configuration without any need for optimization iterations and finite element analysis;(2)both the SR ResUNet-GAN and the CR ResUNet-GAN can be employed individually or in combination to achieve each function,according to the needs of heat transfer structures.The data-driven method provides an efficient design framework for three-dimensional practical engineering problems. 展开更多
关键词 3D-topology optimization Heat transfer Generative and adversarial network Deep learning
原文传递
Efficient deep-learning-based surrogate model for reservoir production optimization using transfer learning and multi-fidelity data
11
作者 Jia-Wei Cui Wen-Yue Sun +2 位作者 Hoonyoung Jeong Jun-Rong Liu Wen-Xin Zhou 《Petroleum Science》 2025年第4期1736-1756,共21页
In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However... In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges. 展开更多
关键词 Subsurface flow simulation Surrogate model Transfer learning Multi-fidelity training data Production optimization
原文传递
Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation
12
作者 Jiaying Ma Jian Liu +6 位作者 Yue Wen Zhanli Ma Jinzhu Zhang Feihu Yin Tehseen Javed Jihong Zhang Zhenhua Wang 《Journal of Integrative Agriculture》 2025年第6期2410-2424,共15页
In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resource... In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels(S1: 1 g L^(–1), S2: 3 g L^(–1), and S3: 5 g L^(–1)) and irrigation amounts(W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water(<3 g L^(–1)) enhanced plant wateruptake and utilization capacity, with the soil water content(SWC) reduced by 6.5–7.62% and 10.52–13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 condition, the soil salt content(SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% in 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81–89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha^(–1)in 2018 and 128,329.71 kg ha^(–1)in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling(SEM) revealed that soil environmental factors(SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes(plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores(CES) when it was below 0.96 g L^(–1). Using brackish water with a salinity of 3 g L^(–1)at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES(0.709). However, using brackish water for more than one year proved unfeasible. 展开更多
关键词 processing tomatoes soil water and salt transport YIELD water use efficiency irrigation water salinity mulcheddrip irrigation
在线阅读 下载PDF
Efficient Cooperative Target Node Localization with Optimization Strategy Based on RSS for Wireless Sensor Networks
13
作者 Xinrong Zhang Bo Chang 《Computers, Materials & Continua》 2025年第3期5079-5095,共17页
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ... In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error. 展开更多
关键词 Wireless sensor networks received signal strength(RSS) optimization algorithm cooperative localiza-tion weighted least squares
在线阅读 下载PDF
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
14
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 Hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
Multi-Objective optimization for stable and efficient cargo transportation of partial space elevator
15
作者 Gefei Shi Zheng H.Zhu 《Defence Technology(防务技术)》 2025年第2期17-29,共13页
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s... This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function. 展开更多
关键词 Partial space elevator Stable transportation Libration decoupling analytical speed function Coordinate game Model predictive control Pareto optimization
在线阅读 下载PDF
An Efficient Modelling of Oversampling with Optimal Deep Learning Enabled Anomaly Detection in Streaming Data 被引量:2
16
作者 R.Rajakumar S.Sathiya Devi 《China Communications》 SCIE CSCD 2024年第5期249-260,共12页
Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL... Recently,anomaly detection(AD)in streaming data gained significant attention among research communities due to its applicability in finance,business,healthcare,education,etc.The recent developments of deep learning(DL)models find helpful in the detection and classification of anomalies.This article designs an oversampling with an optimal deep learning-based streaming data classification(OS-ODLSDC)model.The aim of the OSODLSDC model is to recognize and classify the presence of anomalies in the streaming data.The proposed OS-ODLSDC model initially undergoes preprocessing step.Since streaming data is unbalanced,support vector machine(SVM)-Synthetic Minority Over-sampling Technique(SVM-SMOTE)is applied for oversampling process.Besides,the OS-ODLSDC model employs bidirectional long short-term memory(Bi LSTM)for AD and classification.Finally,the root means square propagation(RMSProp)optimizer is applied for optimal hyperparameter tuning of the Bi LSTM model.For ensuring the promising performance of the OS-ODLSDC model,a wide-ranging experimental analysis is performed using three benchmark datasets such as CICIDS 2018,KDD-Cup 1999,and NSL-KDD datasets. 展开更多
关键词 anomaly detection deep learning hyperparameter optimization OVERSAMPLING SMOTE streaming data
在线阅读 下载PDF
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
17
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 Dynamic optimal interpolation Linearoptimal interpolation Satellite altimetry Sea surface height Suitable region
原文传递
Lax-Oleinik-Type Formulas and Efficient Algorithms for Certain High-Dimensional Optimal Control Problems
18
作者 Paula Chen Jerome Darbon Tingwei Meng 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1428-1471,共44页
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p... Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time. 展开更多
关键词 optimal control Hamilton-Jacobi partial differential equations Grid-free numerical methods High dimensions Field-programmable gate arrays(FPGAs)
在线阅读 下载PDF
An Efficient Approach for Transforming Unbalanced Transportation Problems into Balanced Problems in Order to Find Optimal Solutions
19
作者 Abdur Rashid Md. Amirul Islam 《American Journal of Operations Research》 2024年第1期74-86,共13页
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a... In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method. 展开更多
关键词 Unbalanced Transportation Problem (UTP) Supply DEMAND Initial Solution optimal Solution
在线阅读 下载PDF
基于双流特征交叉融合Efficient Transformer的人脸表情识别
20
作者 党宏社 孟饶辰 高宛蓉 《计算机工程与应用》 北大核心 2025年第15期251-257,共7页
面部表情识别在人机交互等现实应用中得到了越来越多的重视。为解决传统方法中由于类间相似性和类内差异引起的识别准确率低等问题,提出了一种双流特征交叉融合Efficient Transformer识别人脸表情的方法。使用IResNet50和MobileFaceNet... 面部表情识别在人机交互等现实应用中得到了越来越多的重视。为解决传统方法中由于类间相似性和类内差异引起的识别准确率低等问题,提出了一种双流特征交叉融合Efficient Transformer识别人脸表情的方法。使用IResNet50和MobileFaceNet分别提取人脸表情的图像和关键点的多尺度特征,同时采用通道注意力机制来增强关键特征并减少参数量;引入了交叉融合高效多头自注意力机制(cross fusion efficient multi-head self-attention,CFEMSA),对相同尺度的双流特征进行交叉融合,以突出面部显著特征;最后采用特征金字塔结构对不同尺度的交叉融合结果进行多尺度融合,以提高识别的准确性。提出的方法在RAF-DB、AffecNet-7和AffecNet-8数据集上的识别准确率分别为91.82%、67.46%和63.65%,实验结果证明该方法有效缓解了类间相似性和类内差异所引起的识别准确率低的问题。 展开更多
关键词 面部表情识别 efficient Transformer 交叉融合 多尺度特征 特征融合
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部