In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a rema...In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missin...In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.展开更多
This editorial revisits the topic of plant allometry.This topic is the subject of a large volume of literature,so coverage here is necessarily selective,focusing on points of interest for grassland research.In my fina...This editorial revisits the topic of plant allometry.This topic is the subject of a large volume of literature,so coverage here is necessarily selective,focusing on points of interest for grassland research.In my final year of undergraduate study(1983),three different courses I took included a module based on Yoda's 1963 study,“Self-thinning in overcrowded pure stands”(Yoda et al.,1963).Principles elucidated in that paper were seen as fundamental to the theoretical understanding of crop-specific husbandry recommendations for yield optimization.展开更多
Biodiesel as a renewable alternative to conventional diesel is a growing topic of interest due to its potential environmental benefits.It is typically produced from oilseed crops such as soybean,rapeseed,palm oil,or a...Biodiesel as a renewable alternative to conventional diesel is a growing topic of interest due to its potential environmental benefits.It is typically produced from oilseed crops such as soybean,rapeseed,palm oil,or animal fats.However,its sustainability is debated,primarily because of the reliance on edible oil feedstocks and associated economic and environmental concerns.This study explores alternative,non-edible feedstocks,such as algae and jatropha,that do not compete with food production,offering increased sustainability.Despite their potential,these feedstocks are hindered by high production costs.To address these challenges,innovative approaches in feedstock assessment are imperative for ensuring the long-term viability of biodiesel as an alternative fuel.This review examines explicitly the application of deep learning techniques in selecting and evaluating biodiesel feedstocks.It focuses on their production processes and the chemical and physical properties that impact biodiesel quality.Our comprehensive analysis demonstrates that ANNs provide significant insights into the feedstock assessment process,emerging as a potent tool for identifying new correlations within complex datasets.By leveraging this capability,ANNs can significantly advance biodiesel research,producing more sustainable and efficient feedstock production.The study concludes by highlighting the substantial potential of ANN modeling in contributing to renewable energy strategies and expanding biodiesel research,underscoring its vital role in accelerating the development of biodiesel as a sustainable fuel alternative.展开更多
Constructal theory is introduced into the molten steel yield maximization of a converter in this paper. For the specific total cost of materials, generalized constructal optimization of a converter steel-making proces...Constructal theory is introduced into the molten steel yield maximization of a converter in this paper. For the specific total cost of materials, generalized constructal optimization of a converter steel-making process is performed. The optimal cost distribution of materials is obtained, and is also called as "generalized optimal construct". The effects of the hot metal composition contents, hot metal temperature, slag basicity and ratio of the waste steel price to the sinter ore price on the optimization results are analyzed.The results show that the molten steel yield after optimization is increased by 5.48% compared with that before optimization when sinter ore and waste steel are taken as the coolants, and the molten steel yield is increased by 6.84% when only the sinter ore is taken as the coolant. It means that taking sinter ore as coolant can improve the economic performance of the converter steelmaking process. Decreasing the contents of the silicon, phosphorus and manganese in the hot metal can increase the molten steel yield. The change of slag basicity affects the molten steel yield a little.展开更多
Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a mod- erate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield...Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a mod- erate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typ- ically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algo- rithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.展开更多
Interferometric measurements of high harmonics induced by multiple laser fields represent a burgeoning field of research,offering prospects for optimized harmonic yield and enabling time-and space-resolved nonlinear s...Interferometric measurements of high harmonics induced by multiple laser fields represent a burgeoning field of research,offering prospects for optimized harmonic yield and enabling time-and space-resolved nonlinear spectroscopy.While most investigations have focused on controlling the time delay between pulses,our study introduces a novel approach.By manipulating an additional parameter—the phase difference between the fields—we unveil detailed insights into the physical mechanisms governing the ultrafast processes underlying high harmonic generation.Leveraging high harmonic 2-dimensional interferograms,our method facilitates the streamlined analysis of attosecond electron dynamics in complex molecules and solids,marking an important advancement in this rapidly evolving field.展开更多
A quantitative yield analysis of a traditional current sensing circuit considering the random dopant fluctuation effect is presented. It investigates the impact of transistor size, falling time of control signal CS an...A quantitative yield analysis of a traditional current sensing circuit considering the random dopant fluctuation effect is presented. It investigates the impact of transistor size, falling time of control signal CS and threshold voltage of critical transistors on failure probability of current sensing circuit. On this basis, we present a final optimization to improve the reliability of current sense amplifier. Under 90 nm process, simulation shows that failure probability of current sensing circuit can be reduced by 80% after optimization compared with the normal situation and the delay time only increases marginally.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602204)the National Natural Science Foundation of China(Nos.12175241,12221005)+2 种基金the Fundamental Research Funds for the Central Universitiesthe International Partnership Program of the Chinese Academy of Sciences(No.211134KYSB20200057)the Double First-Class University Project Foundation of USTC。
文摘In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61173088 and 61070143)the 111 Project(Grant No.B08038)
文摘In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.
文摘This editorial revisits the topic of plant allometry.This topic is the subject of a large volume of literature,so coverage here is necessarily selective,focusing on points of interest for grassland research.In my final year of undergraduate study(1983),three different courses I took included a module based on Yoda's 1963 study,“Self-thinning in overcrowded pure stands”(Yoda et al.,1963).Principles elucidated in that paper were seen as fundamental to the theoretical understanding of crop-specific husbandry recommendations for yield optimization.
文摘Biodiesel as a renewable alternative to conventional diesel is a growing topic of interest due to its potential environmental benefits.It is typically produced from oilseed crops such as soybean,rapeseed,palm oil,or animal fats.However,its sustainability is debated,primarily because of the reliance on edible oil feedstocks and associated economic and environmental concerns.This study explores alternative,non-edible feedstocks,such as algae and jatropha,that do not compete with food production,offering increased sustainability.Despite their potential,these feedstocks are hindered by high production costs.To address these challenges,innovative approaches in feedstock assessment are imperative for ensuring the long-term viability of biodiesel as an alternative fuel.This review examines explicitly the application of deep learning techniques in selecting and evaluating biodiesel feedstocks.It focuses on their production processes and the chemical and physical properties that impact biodiesel quality.Our comprehensive analysis demonstrates that ANNs provide significant insights into the feedstock assessment process,emerging as a potent tool for identifying new correlations within complex datasets.By leveraging this capability,ANNs can significantly advance biodiesel research,producing more sustainable and efficient feedstock production.The study concludes by highlighting the substantial potential of ANN modeling in contributing to renewable energy strategies and expanding biodiesel research,underscoring its vital role in accelerating the development of biodiesel as a sustainable fuel alternative.
基金supported by the National Natural Science Foundation of China(Grant Nos.51506220&51579244)the National Key Basic Research and Development Program of China(Grant No.2012CB720405)
文摘Constructal theory is introduced into the molten steel yield maximization of a converter in this paper. For the specific total cost of materials, generalized constructal optimization of a converter steel-making process is performed. The optimal cost distribution of materials is obtained, and is also called as "generalized optimal construct". The effects of the hot metal composition contents, hot metal temperature, slag basicity and ratio of the waste steel price to the sinter ore price on the optimization results are analyzed.The results show that the molten steel yield after optimization is increased by 5.48% compared with that before optimization when sinter ore and waste steel are taken as the coolants, and the molten steel yield is increased by 6.84% when only the sinter ore is taken as the coolant. It means that taking sinter ore as coolant can improve the economic performance of the converter steelmaking process. Decreasing the contents of the silicon, phosphorus and manganese in the hot metal can increase the molten steel yield. The change of slag basicity affects the molten steel yield a little.
文摘Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a mod- erate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typ- ically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algo- rithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.
基金support from the National Key Research and Development Program of China(grant no.2023YFA1407100)Guangdong Province Science and Technology Major Project(Future functional materials under extreme conditions-2021B0301030005)the Guangdong Natural Science Foundation(General Program project no.2023A1515010871).
文摘Interferometric measurements of high harmonics induced by multiple laser fields represent a burgeoning field of research,offering prospects for optimized harmonic yield and enabling time-and space-resolved nonlinear spectroscopy.While most investigations have focused on controlling the time delay between pulses,our study introduces a novel approach.By manipulating an additional parameter—the phase difference between the fields—we unveil detailed insights into the physical mechanisms governing the ultrafast processes underlying high harmonic generation.Leveraging high harmonic 2-dimensional interferograms,our method facilitates the streamlined analysis of attosecond electron dynamics in complex molecules and solids,marking an important advancement in this rapidly evolving field.
基金supported by the State Key Development Program for Basic Research of China(No.2006CB3027-01)
文摘A quantitative yield analysis of a traditional current sensing circuit considering the random dopant fluctuation effect is presented. It investigates the impact of transistor size, falling time of control signal CS and threshold voltage of critical transistors on failure probability of current sensing circuit. On this basis, we present a final optimization to improve the reliability of current sense amplifier. Under 90 nm process, simulation shows that failure probability of current sensing circuit can be reduced by 80% after optimization compared with the normal situation and the delay time only increases marginally.