期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A three-stage series model predictive torque and flux control system based on fast optimal voltage vector selection for more electric aircraft
1
作者 Zhaoyang FU Lixian PENG +2 位作者 Shuangrui PING Lefei GE Weilin LI 《Chinese Journal of Aeronautics》 2025年第11期315-328,共14页
With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter ... With the development of More Electric Aircraft(MEA),the Permanent Magnet Synchronous Motor(PMSM)is widely used in the MEA field.The PMSM control system of MEA needs to consider the system reliability,and the inverter switching frequency of the inverter is one of the impacting factors.At the same time,the control accuracy of the system also needs to be considered,and the torque ripple and flux ripple are usually considered to be its important indexes.This paper proposes a three-stage series Model Predictive Torque and Flux Control system(three-stage series MPTFC)based on fast optimal voltage vector selection to reduce switching frequency and suppress torque ripple and flux ripple.Firstly,the analytical model of the PMSM is established and the multi-stage series control method is used to reduce the switching frequency.Secondly,selectable voltage vectors are extended from 8 to 26 and a fast selection method for optimal voltage vector sectors is designed based on the hysteresis comparator,which can suppress the torque ripple and flux ripple to improve the control accuracy.Thirdly,a three-stage series control is obtained by expanding the two-stage series control using the P-Q torque decomposition theory.Finally,a model predictive torque and flux control experimental platform is built,and the feasibility and effectiveness of this method are verified through comparison experiments. 展开更多
关键词 Fast optimal voltage vector selection Model predictive control Permanent magnet synchronous motor Ripple suppression Switching frequency
原文传递
Costless-Function Model Predictive Current Control of Seven-Phase PMSM to Improve Dynamic Performance and Suppress Harmonics of Marine Electric Propulsion System
2
作者 Xin Li Wei Xie Xiaoyan Xu 《Journal of Mechanics Engineering and Automation》 2020年第6期170-180,共11页
In order to improve the dynamic performance and suppress current harmonic for seven-phase PMSM(permanent magnet synchronous motor),this paper proposed an MPCC(mode predict current control)scheme based on SVPWM(space v... In order to improve the dynamic performance and suppress current harmonic for seven-phase PMSM(permanent magnet synchronous motor),this paper proposed an MPCC(mode predict current control)scheme based on SVPWM(space vector pulse width modulation)technique.By this scheme,the 14 virtual voltage vectors are first calculated based on the principle:the voltage vector synthesized in the 3rd harmonic subspace and the 5th harmonic subspace should be zero,in each sampling period,the optimal voltage vector is directly selected from the 14 virtual voltage vectors to achieve the best output current performance of seven-phase PMSM.In addition,no cost function related calculations are required in the MPCC scheme,reducing the calculation time and improving the dynamic response of the system.The simulation model of the seven-phase PMSM vector control system is established by using the Simulink tool of MATLAB,and the effectiveness of the scheme will be presented. 展开更多
关键词 optimal voltage vector seven-phase PMSM MPCC SVPWM harmonic suppress
在线阅读 下载PDF
A weighted voltage model predictive control method for a virtual synchronous generator with enhanced parameter robustness 被引量:7
3
作者 Leilei Guo Zhiye Xu +2 位作者 Nan Jin Yanyan Li Wei Wang 《Protection and Control of Modern Power Systems》 2021年第1期482-492,共11页
To address the problem of insufficient system inertia and improve the power quality of grid-connected inverters,and to enhance the stability of the power system,a method to control a virtual synchronous generator(VSG)... To address the problem of insufficient system inertia and improve the power quality of grid-connected inverters,and to enhance the stability of the power system,a method to control a virtual synchronous generator(VSG)output voltage based on model predictive control(MPC)is proposed.Parameters of the inductors,capacitors and other components of the VSG can vary as the temperature and current changes.Consequently the VSG output voltage and power control accuracy using the conventional MPC method may be reduced.In this paper,to improve the parameter robustness of the MPC method,a new weighted predictive capacitor voltage control method is proposed.Through detailed theoretical analysis,the principle of the proposed method to reduce the influence of parameter errors on voltage tracking accuracy is analyzed.Finally,the effectiveness and feasibility of the proposed method are verified by experimental tests using the Typhoon control hardware-in-the-loop experimental platform. 展开更多
关键词 Virtual synchronous generator Model predictive control optimal voltage vector Parameter error compensation
在线阅读 下载PDF
Improved Optimal Duty Model Predictive Current Control Strategy for PMSM 被引量:2
4
作者 Dingdou Wen Jie Yuan +1 位作者 Yang Zhang Chuandong Shi 《Chinese Journal of Electrical Engineering》 CSCD 2022年第3期133-141,共9页
To further improve the steady-state performance of the conventional dual vector model predictive current control(MPCC),an improved optimal duty MPCC strategy for permanent magnet synchronous motor(PMSM)is proposed.Thi... To further improve the steady-state performance of the conventional dual vector model predictive current control(MPCC),an improved optimal duty MPCC strategy for permanent magnet synchronous motor(PMSM)is proposed.This strategy is realized by selecting an optimal voltage vector combination and its duration from the five basic voltage vector combinations,followed by acting on the inverter.The five combinations are:the combination of the optimal voltage vector at the previous moment and basic voltage vector with an angle difference of 60°;the combination of the optimal voltage vector at the previous moment and basic voltage vector with an angle difference of-60°;the combination of the aforementioned three basic voltage vectors with the zero vector.Experimental results indicate that the method effectively reduces the stator current ripple without increasing the calculational burden.Furthermore,it improves the steady-state performance of the system without altering the dynamic performance of the system. 展开更多
关键词 Model predictive current control improved optimal duty optimal voltage vector combination steady-state performance PMSM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部